-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode113.html
116 lines (109 loc) · 5.76 KB
/
node113.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>数值示例</title>
<meta charset="utf-8">
<meta name="description" content="数值示例">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html2450" href="node114.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2444" href="node103.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2440" href="node112.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2446" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2448" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2451" href="node114.html">L形膜片结果</a>
<b>上一级:</b><a name="tex2html2445" href="node103.html">Lanczos方法</a>
<b>上一节:</b><a name="tex2html2441" href="node112.html">可用的软件</a>
<br>
<br>
<!--End of Navigation Panel-->
<h2><a name="SECTION001346000000000000000"></a>
<a name="sec:laneg"></a>
数值示例
</h2>
我们将考虑应用于两个简单但典型的示例的Lanczos算法,使用的是LANSO软件。
<p>
第一个示例是计算L形膜的一些特征模态。采用网格间距<span class="math-inline">h=1/64</span>的标准五点有限差分近似,得到一个阶数为<span class="math-inline">n=2945</span>的稀疏对称正定矩阵。它将具有非常规则的稀疏带状结构,每行最多有五个非零元素。其特征值将位于区间<span class="math-inline">0<\lambda_i<8</span>内,对称分布在<span class="math-inline">\lambda=4</span>周围,并且在谱的两端分布更密集。
<p>
第二个测试示例来自信息检索应用,涉及一个术语-文档矩阵,其中每一列代表一个文档,每一行代表一个术语。元素<span class="math-inline">x_{i,j}</span>为1,如果术语<span class="math-inline">i</span>出现在文档<span class="math-inline">j</span>中,否则为零。一组主要奇异值的空间可用于发现某些文档之间的联系。具体的矩阵M<small>EDLINE</small>是大小为<span class="math-inline">7014\times 1033</span>的矩形矩阵,中等稀疏,填充了53,287个元素,即每行大约有8个元素。显式形成乘积<span class="math-inline">A=X^TX</span>不是一个好主意,因为这个矩阵将几乎全满,有910,755个元素(或<span class="math-inline">85\%</span>)非零。我们通过先计算<span class="math-inline">z=Xx</span>,然后计算<span class="math-inline">y=X^Tz</span>来实现乘积<span class="math-inline">y=Ax</span>。
<p>
<br><hr>
<!--子链接表-->
<a name="CHILD_LINKS"><strong>子章节</strong></a>
<ul>
<li><a name="tex2html2452" href="node114.html">L形膜的结果</a>
<li><a name="tex2html2453" href="node115.html">Medline SVD的结果</a>
<li><a name="tex2html2454" href="node116.html">带位移-反转变换的L形膜结果</a>
</ul>
<!--子链接表结束-->
<hr>
<!--Navigation Panel-->
<a name="tex2html2450" href="node114.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2444" href="node103.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2440" href="node112.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2446" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2448" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2451" href="node114.html">L形膜片结果</a>
<b>上一级:</b><a name="tex2html2445" href="node103.html">Lanczos方法</a>
<b>上一节:</b><a name="tex2html2441" href="node112.html">可用的软件</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>