-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode114.html
120 lines (110 loc) · 6.26 KB
/
node114.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>L形膜片结果</title>
<meta charset="utf-8">
<meta name="description" content="L形膜片结果">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html2467" href="node115.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2461" href="node113.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2455" href="node113.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2463" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2465" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2468" href="node115.html">Medline SVD 结果</a>
<b>上一级:</b><a name="tex2html2462" href="node113.html">数值示例</a>
<b>上一节:</b><a name="tex2html2456" href="node113.html">数值示例</a>
<br>
<br>
<!--End of Navigation Panel-->
<h4><a name="SECTION001346010000000000000">
L形膜片的结果。</a>
</h4>
对于直接应用Lanczos算法的情况,极值特征值首先收敛,并且在这种情况下,收敛在谱的两端都非常相似。
<p>
<div style="text-align: center;">
<a name="7915"></a>
<img src="icon/LmembLanRes.png" alt="图4.1:L形膜片矩阵的残差估计。" id="LmembLanRes"/>
<figcaption>图4.1:L形膜片矩阵的残差估计。</figcaption>
</div>
<p>
<div style="text-align: center;">
<a name="7921"></a>
<img src="icon/LmembLanRitz.png" alt="图4.2:L形膜片矩阵的Ritz值。" id="LmembLanRitz"/>
<figcaption>图4.2:L形膜片矩阵的Ritz值。</figcaption>
</div>
<p>
我们在图<a href="node114.html#LmembLanRes">4.1</a>中绘制了作为Lanczos步数<span class="math-inline">j</span>函数的六个最大特征值的估计残差(<a href="node103.html#estimate_residual">4.13</a>)。这些曲线显示了每一步的残差估计(<a href="node103.html#estimate_residual">4.13</a>),并且仅在实际计算后为了说明目的而计算。LANSO算法调用QL算法来计算特征值和特征向量的最后元素以测试收敛性(<a href="node103.html#estimate_residual">4.13</a>),在图中用虚线垂直线标记的迭代中。选择性正交化在我们用虚线标记的步骤中触发了重新正交化,总共在这300步中只发生了三次。这是典型的情况,收敛缓慢:正交性一直保持到第一个Ritz值收敛。
<p>
需要注意的是,大约需要150步才能将主导特征值的残差降低到<span class="math-inline">10^{-4}</span>,并且还需要另外150步才能达到完全的机器精度。观察图<a href="node114.html#LmembLanRitz">4.2</a>中绘制的Ritz值<span class="math-inline">\theta^{(j)}_i</span>(<a href="node103.html#T-eigenvalues">4.11</a>)与<span class="math-inline">j</span>的关系,我们可以看到最大的Ritz值随着<span class="math-inline">j</span>增长直到大约第60步时趋于稳定。通常一个Ritz值会开始接近一个特征值,但随后会移动到另一个尚未找到的特征值。这在第60到80步的第三个Ritz值和第150到210步的第六个Ritz值中表现得更为明显。这种现象在图<a href="node114.html#LmembLanRes">4.1</a>中以不太明显的方式出现,其中第三和第六条曲线在Ritz值改变归属的步骤处出现了平台。直接使用Lanczos方法的用户在决定是否所有最大特征值都真正收敛时应谨慎。
<p>
<hr><!--Navigation Panel-->
<a name="tex2html2467" href="node115.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2461" href="node113.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2455" href="node113.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2463" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2465" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2468" href="node115.html">Medline SVD 结果</a>
<b>上一级:</b><a name="tex2html2462" href="node113.html">数值示例</a>
<b>上一节:</b><a name="tex2html2456" href="node113.html">数值示例</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>