-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode117.html
137 lines (129 loc) · 6.1 KB
/
node117.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>隐式重启Lanczos R. Lehoucq and D. Sorensen</title>
<meta charset="utf-8">
<meta name="description" content="隐式重启Lanczos R. Lehoucq and D. Sorensen">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html2507" href="node118.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2501" href="node85.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2495" href="node116.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2503" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2505" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2508" href="node118.html">隐式重启</a>
<b>上一级:</b><a name="tex2html2502" href="node85.html">厄米特征值问题</a>
<b>上一节:</b><a name="tex2html2496" href="node116.html">L形膜片位移-逆结果</a>
<br>
<br>
<!--End of Navigation Panel-->
<h1>
<a name="SECTION001350000000000000000"></a>
<a name="sec:irlm"></a><a name="7954"></a>
隐式重启Lanczos方法
<br> <em>R. Lehoucq 和 D. Sorensen</em>
</h1>
<p>
厄米矩阵的Lanczos过程已在第<a href="node103.html#sec:lan">4.4</a>节中推导过。
这里,我们将讨论如何应用隐式重启技术。
我们的起点是一个<em><span class="math-inline">k</span>步Lanczos分解</em>(参见<a href="node103.html#herm-recursion">4.10</a>):
<div class="math-display">A V_k = V_k T_k + r_k e_k^{\ast},</div>
其中,<span class="math-inline">V_k \in {\mathcal C}^{n \times k}</span>
的列是正交归一化的,<span class="math-inline"> V_k^{\ast} r_k = 0</span>,
而<span class="math-inline">T_k \in {\mathcal R}^{k \times k}</span>是实对称且三对角化的,其次对角线元素非负。
<span class="math-inline"> V_k </span>的列被称为<em>Lanczos向量</em>。
<a name="7967"></a>
对于隐式重启,确保<span class="math-inline"> V_k </span>的列达到完全正交精度至关重要。
<p>
<br><hr>
<!--Table of Child-Links-->
<a name="CHILD_LINKS"><strong>小节</strong></a>
<ul>
<li><a name="tex2html2509" href="node118.html">隐式重启</a>
<li><a name="tex2html2510" href="node119.html">位移的选择</a>
<li><a name="tex2html2511" href="node120.html">GEMV形式的Lanczos方法</a>
<li><a name="tex2html2512" href="node121.html">收敛性质</a>
<li><a name="tex2html2513" href="node122.html">计算成本与权衡</a>
<li><a name="tex2html2514" href="node123.html">收缩与停止规则</a>
<li><a name="tex2html2515" href="node124.html">正交收缩变换</a>
<ul>
<li><a name="tex2html2516" href="node125.html">锁定或清洗单个特征值</a>
<li><a name="tex2html2517" href="node126.html">锁定 <span class="math-inline">\theta </span></a>
<li><a name="tex2html2518" href="node127.html">清洗 <span class="math-inline">\theta </span></a>
<li><a name="tex2html2519" href="node128.html"><span class="math-inline">Q^* T Q</span> 的稳定性</a>
</ul>
<li><a name="tex2html2520" href="node129.html">锁和清洗的实施</a>
<li><a name="tex2html2521" href="node130.html">可用的软件</a>
</ul>
<!--End of Table of Child-Links-->
<br><hr>
<!--Navigation Panel-->
<a name="tex2html2507" href="node118.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2501" href="node85.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2495" href="node116.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2503" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2505" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2508" href="node118.html">隐式重启</a>
<b>上一级:</b><a name="tex2html2502" href="node85.html">厄米特征值问题</a>
<b>上一节:</b><a name="tex2html2496" href="node116.html">L形膜片位移-逆结果</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>