-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode142.html
117 lines (108 loc) · 6.43 KB
/
node142.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>收缩</title>
<meta charset="utf-8">
<meta name="description" content="收缩">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html2886" href="node143.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2880" href="node140.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2874" href="node141.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2882" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2884" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2887" href="node143.html">预处理</a>
<b>上一级:</b><a name="tex2html2881" href="node140.html">重启与收缩</a>
<b>上一节:</b><a name="tex2html2875" href="node141.html">重启策略</a>
<br>
<br>
<!--End of Navigation Panel--><h4><a name="SECTION001373020000000000000"></a>
<a name="9744"></a>
收缩
</h4>
<p>
当一个Ritz值足够接近某个特征值时,当前子空间的剩余部分将已经包含丰富的邻近特征对成分,因为我们已经在每一步中选择了与期望特征值接近的Ritz向量。我们可以利用这些信息作为计算下一个特征向量的子空间基础。为了防止已计算的特征向量重新进入计算过程,我们在Jacobi-Davidson算法中使新的搜索向量显式地与已计算的特征向量正交。这种技术被称为显式<em>收缩</em>。我们将在稍详细地讨论这一点。
<p>
设<span class="math-inline">\widetilde{x}_1,\ldots,\widetilde{x}_{k-1}</span>表示已接受的特征向量近似,并假设这些向量是正交归一的。矩阵<span class="math-inline">\widetilde{X}_{k-1}</span>的列向量为<span class="math-inline">\widetilde{x}_j</span>。为了找到下一个特征向量<span class="math-inline">\widetilde{x}_k</span>,我们将Jacobi-Davidson算法应用于收缩矩阵 <sup><a href="#footnote-deflated-matrix">1</a></sup>
<div class="math-display">(I-\widetilde{X}_{k-1}\widetilde{X}_{k-1}^\ast)\,A\,(I-\widetilde{X}_{k-1}\widetilde{X}_{k-1}^\ast) ,</div>
这将导致一个修正方程,形式如下
<div class="math-display" name="#eq:jddefl">{P}_{m}(I-\widetilde{X}_{k-1}\widetilde{X}_{k-1}^\ast)(A-\theta^{(m)}_j I)(I-\widetilde{X}_{k-1}\widetilde{X}_{k-1}^\ast){P}_{m} t_j^{(m)} = -r_j^{({m})}, \tag{4.50}</div>
其中<span class="math-inline">{P}_{m}\equiv (I-{u}_j^{(m)}{{u}_j^{(m)}}^{\ast})</span>,需要为每个新的特征向量近似<span class="math-inline">{u}_j^{(m)}</span>求解修正<span class="math-inline">t_j^{(m)}</span>,对应的Ritz值为<span class="math-inline">\theta_j^{(m)}</span>。在[<a href="node421.html#fosv98">172</a>]中,通过数值证据表明,对于修正方程,显式地对由<span class="math-inline">\widetilde{X}_{k-1}</span>表示的向量进行收缩是非常推荐的,但在计算投影矩阵时(将<span class="math-inline">A</span>投影到由连续近似<span class="math-inline">{v}_j</span>张成的子空间上,以寻找第<span class="math-inline">k</span>个特征向量),并不需要包含这种收缩。投影矩阵可以计算为<span class="math-inline">{V}_{m}^\ast A{V}_{m}</span>,而不会显著损失精度。
<p>
<hr>
<ol>
<li id="footnote-deflated-matrix">
在利用近似特征向量进行收缩时,若计算出的特征值与剩余特征值之间有良好的分离度,则可能会在特征值上引入数量级为 <span class="math-inline">\epsilon^2</span> 的误差[<a href="node421.html#parl80">353</a>,第5.1节]。
</li>
</ol>
<hr>
<!--Navigation Panel-->
<a name="tex2html2886" href="node143.html">
<button class="navigate">下一节</button></a>
<a name="tex2html2880" href="node140.html">
<button class="navigate">上一级</button></a>
<a name="tex2html2874" href="node141.html">
<button class="navigate">上一节</button></a>
<a name="tex2html2882" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html2884" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html2887" href="node143.html">预处理</a>
<b>上一级:</b><a name="tex2html2881" href="node140.html">重启与收缩</a>
<b>上一节:</b><a name="tex2html2875" href="node141.html">重启策略</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>