-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode153.html
108 lines (98 loc) · 6.49 KB
/
node153.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>关于聚集特征值的评述</title>
<meta charset="utf-8">
<meta name="description" content="关于聚集特征值的评述">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3040" href="node154.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3034" href="node148.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3028" href="node152.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3036" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3038" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3041" href="node154.html">关于高相对精度特征值计算的评述</a>
<b>上一级:</b><a name="tex2html3035" href="node148.html">稳定性和准确性评估 </a>
<b>上一节:</b><a name="tex2html3029" href="node152.html">计算特征向量的误差界</a>
<br>
<br>
<!--End of Navigation Panel--><h4><a name="SECTION001380050000000000000">
关于聚集特征值的评述</a>
</h4>
当特征值 <span class="math-inline">\lambda</span> 与矩阵 <span class="math-inline">A</span> 的一个或多个其他特征值非常接近时,换句话说,当 <span class="math-inline">\lambda</span> 属于聚类特征值时,根据(<a href="node151.html#ineq:err-1-ev">4.54</a>)的保证,只要 <span class="math-inline">\Vert r\Vert _2</span> 很小,计算得到的 <span class="math-inline">\widetilde\lambda</span> 仍然是准确的,但由于(<a href="node152.html#ineq:err-1-evt">4.56</a>)中分母出现的间隙 <span class="math-inline">\delta</span>,计算得到的特征向量 <span class="math-inline">\widetilde x</span> 可能不准确。事实证明,与聚类特征值相关的每个单独特征向量对扰动非常敏感,但由所有这些特征向量张成的特征空间则不然。因此,对于聚类特征值,我们应该计算整个特征空间。
基于上述思路的理论可以建立,从残差矩阵开始
<div class="math-display">R=A\widetilde X-\widetilde X\widetilde\Lambda,</div>
其中 <span class="math-inline">\widetilde\Lambda</span> 是对角矩阵,其对角元素是聚类中所有特征值的近似值,而 <span class="math-inline">\widetilde X</span> 的列是对应的近似特征向量。假设 <span class="math-inline">\widetilde X</span> 的列是正交的,并且 <span class="math-inline">\widetilde\Lambda</span> 比 <span class="math-inline">\Lambda</span> 更接近,<span class="math-inline">\Lambda</span> 是对角矩阵,其对角元素是聚类中的所有特征值。设 <span class="math-inline">X</span> 是与 <span class="math-inline">\Lambda</span> 相关的特征向量矩阵,<span class="math-inline">\delta</span> 是 <span class="math-inline">\widetilde\Lambda</span> 对角线上任意近似特征值与 <span class="math-inline">A</span> 中未出现在 <span class="math-inline">\Lambda</span> 对角线上的特征值之间的最小差值。那么 [<a href="node421.html#daka:70">101</a>]
<div class="math-display">\Vert\sin\Theta(X,\widetilde X)\Vert _{F}\le\frac {\Vert R\Vert _{F}}{\delta},</div>
其中 <span class="math-inline">\Theta(X,\widetilde X)</span> 是对角矩阵,其对角元素是 <span class="math-inline">X^*\widetilde X</span> 的奇异值的反余弦值。由于其定义方式,预计这个间隙会很大,因此只要 <span class="math-inline">\Vert R\Vert _{F}</span> 很小,<span class="math-inline">\Vert\sin\Theta(X,\widetilde X)\Vert _{F}</span> 也会很小。
<p>
<hr><!--Navigation Panel-->
<a name="tex2html3040" href="node154.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3034" href="node148.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3028" href="node152.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3036" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3038" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3041" href="node154.html">关于高相对精度特征值计算的评述</a>
<b>上一级:</b><a name="tex2html3035" href="node148.html">稳定性和准确性评估 </a>
<b>上一节:</b><a name="tex2html3029" href="node152.html">计算特征向量的误差界</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>