-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode154.html
98 lines (94 loc) · 5.64 KB
/
node154.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>关于高相对精度特征值计算的评述</title>
<meta charset="utf-8">
<meta name="description" content="关于高相对精度特征值计算的评述">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3052" href="node155.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3046" href="node148.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3042" href="node153.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3048" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3050" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3053" href="node155.html">广义厄米特征值问题</a>
<b>上一级:</b><a name="tex2html3047" href="node148.html">稳定性和准确性评估 </a>
<b>上一节:</b><a name="tex2html3043" href="node153.html">关于聚集特征值的评述</a>
<br>
<br>
<!--End of Navigation Panel--><h4><a name="SECTION00138000000000000000">
关于高相对精度特征值计算的评述</a>
</h4>
过去10年左右,高精度特征值计算一直备受关注。在理论理解和数值算法方面都取得了巨大进展。但详细介绍超出了本书的范围。感兴趣的读者可参考相关文献。在算法方面,有Demmel-Kahan QR方法用于双对角奇异值计算[<a href="node421.html#deka:90">123</a>],以及(双侧)Jacobi方法用于正定矩阵的特征值问题。对于奇异值计算[<a href="node421.html#deve92">124</a>,<a href="node421.html#math:95a">317</a>,<a href="node421.html#slap92">406</a>],有针对缩放对角占优矩阵的二分法[<a href="node421.html#bade90">40</a>],以及针对无环图矩阵的新qd方法实现[<a href="node421.html#degr:93">117</a>,<a href="node421.html#kaha:66c">255</a>]和Demmel的结构化矩阵算法[<a href="node421.html#demm:00">115</a>]。最近,[<a href="node421.html#dgesvd:99">118</a>]展示了如何为可精确分解为<span class="math-inline">B=X\Gamma Y^*</span>的矩阵计算高相对精度的SVD,其中<span class="math-inline">\Gamma</span>是对角矩阵,<span class="math-inline">X</span>和<span class="math-inline">Y</span>是任意良态矩阵。在理论方面,对于乘性扰动<span class="math-inline">A\to\widetilde A=D^*AE</span>(当<span class="math-inline">A</span>是厄米矩阵时<span class="math-inline">E=D</span>),得到了许多关于绝对扰动的著名定理的类似结果[<a href="node421.html#eiip:95">157</a>,<a href="node421.html#li:97a">300</a>,<a href="node421.html#rcli98">301</a>,<a href="node421.html#rcli99">302</a>,<a href="node421.html#li:99a">303</a>,<a href="node421.html#lima:99">297</a>]。
<p>
<hr>
<!--Navigation Panel-->
<a name="tex2html3052" href="node155.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3046" href="node148.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3042" href="node153.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3048" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3050" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3053" href="node155.html">广义厄米特征值问题</a>
<b>上一级:</b><a name="tex2html3047" href="node148.html">稳定性和准确性评估 </a>
<b>上一节:</b><a name="tex2html3043" href="node153.html">关于聚集特征值的评述</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>