-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode168.html
125 lines (118 loc) · 5.47 KB
/
node168.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>Rayleigh商迭代</title>
<meta charset="utf-8">
<meta name="description" content="Rayleigh商迭代">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
.algorithm {
font-family: inherit;
font-size: inherit;
white-space: pre-wrap;
border: 1px solid #ddd;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3287" href="node169.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3281" href="node165.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3277" href="node167.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3283" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3285" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3288" href="node169.html">Lanczos方法</a>
<b>上一级:</b><a name="tex2html3282" href="node165.html">单向量和多向量迭代</a>
<b>上一节:</b><a name="tex2html3278" href="node167.html">逆迭代</a>
<br>
<br>
<!--End of Navigation Panel-->
<h4><a name="SECTION001440030000000000000">
Rayleigh商迭代</a>
</h4>
类似于逆迭代法,第§<a href="node94.html#sec_power_sym">4.3</a>节中介绍的瑞利商迭代(RQI)方法同样可以推广应用于求解问题 (<a href="node156.html#gsymeig">5.1</a>)。
<a name="17235"></a>
<pre class="algorithm" id="rqi_gsymeig">
算法 5.3 GHEP的Rayleigh商迭代
(1) 选择一个初始向量 <span class="math-inline">v</span>,要求 <span class="math-inline">v^*Bv = 1</span>,令 <span class="math-inline">w = Bv</span>,并取 <span class="math-inline">\rho_1</span>
(2) for <span class="math-inline">k = 1,2,\dots</span>
(3) 计算 <span class="math-inline">y = (A - \rho_k B)^{-1}w</span>
(4) 如果奇异,停止
(5) <span class="math-inline">\theta = w^*y</span>
(6) 计算 <span class="math-inline">w = By</span>
(7) <span class="math-inline">\eta = (w^*y)^{1/2}, \; v = y/\eta, \; w = w / \eta</span>
(8) <span class="math-inline">\rho_{k+1} = \rho_k + \theta/\eta^2</span>
(9) 如果 <span class="math-inline">\vert \theta \vert \ge \epsilon_M^{-1/2}</span>,停止
(10) end for
(11) 获得结果 <span class="math-inline">\lambda = \rho_k, \; x = v</span>
</pre>
<p>
算法<a href="node167.html#invit_gsymeig">5.2</a>与算法<a href="node168.html#rqi_gsymeig">5.3</a>之间的唯一区别在于步骤(8),即更新位移的部分。这导致在每次迭代中,步骤(3)必须进行稀疏分解。然而,这种额外的工作换来的是三次收敛速率。
<p>
<br><hr>
<!--Navigation Panel-->
<a name="tex2html3287" href="node169.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3281" href="node165.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3277" href="node167.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3283" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3285" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3288" href="node169.html">Lanczos方法</a>
<b>上一级:</b><a name="tex2html3282" href="node165.html">单向量和多向量迭代</a>
<b>上一节:</b><a name="tex2html3278" href="node167.html">逆迭代</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>