-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode172.html
114 lines (104 loc) · 5.36 KB
/
node172.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>收敛性质</title>
<meta charset="utf-8">
<meta name="description" content="收敛性质">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3349" href="node173.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3343" href="node169.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3337" href="node171.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3345" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3347" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3350" href="node173.html">多重特征值</a>
<b>上一级:</b><a name="tex2html3344" href="node169.html">Lanczos方法</a>
<b>上一节:</b><a name="tex2html3338" href="node171.html">带SI的Lanczos算法</a>
<br>
<br>
<!--End of Navigation Panel--><h4><a name="SECTION001450030000000000000"></a>
<a name="17600"></a>
收敛性质
</h4>
收敛性受标准情况下的同一正交多项式理论支配,例如,参见[<a href="node421.html#parl80">353</a>]。
<p>
该理论指出,我们能收敛到起始向量中表示的那些特征值,且在谱的两端的特征值收敛更快。这些特征值与剩余特征值的分离程度越好,它们的收敛速度就越快。
<p>
在实际应用中,我们往往只对最低特征值感兴趣,而直接迭代算法[<a href="node170.html#Gen_Herm_Lanczos">5.4</a>]中这些特征值是首先收敛的,这是有益的。另一方面,最低特征值的相对分离度常常不佳——记住,分离度是相对于整个谱的分布,而非与原点的距离。
<p>
在这些情况下,当我们希望获得指定范围内的特征值,例如
<span class="math-inline">\alpha \le \lambda \le \beta</span>,采用适当选择的位移<span class="math-inline">\sigma</span>的位移-反演算法[<a href="node171.html#si-Gen_Herm_Lanczos">5.5</a>],例如在区间
<span class="math-inline">\alpha \le \sigma \le \beta</span>内,具有极大的优势。
<p>
在广义情况下,位移-反演策略比标准情况更具动力,因为我们无论如何都需解一个系统,无论是在步骤4还是步骤9。位移-反演算子<span class="math-inline">C</span>([<a href="node171.html#gen_shift_invert">5.16</a>]),通常具有远为更好的分离特征值,仅需<span class="math-inline">j=50</span>而非数百次迭代就能得到10个特征值。
<p>
<hr><!--Navigation Panel-->
<a name="tex2html3349" href="node173.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3343" href="node169.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3337" href="node171.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3345" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3347" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3350" href="node173.html">多重特征值</a>
<b>上一级:</b><a name="tex2html3344" href="node169.html">Lanczos方法</a>
<b>上一节:</b><a name="tex2html3338" href="node171.html">带SI的Lanczos算法</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>