-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode178.html
144 lines (129 loc) · 7.42 KB
/
node178.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>正定 B</title>
<meta charset="utf-8">
<meta name="description" content="正定 B ">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3441" href="node179.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3435" href="node177.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3429" href="node177.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3437" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3439" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3442" href="node179.html">残差向量</a>
<b>上一级:</b><a name="tex2html3436" href="node177.html">稳定性与准确性评估</a>
<b>上一节:</b><a name="tex2html3430" href="node177.html">稳定性与准确性评估</a>
<br>
<br>
<!--End of Navigation Panel--><h2><a name="SECTION001471000000000000000">
正定矩阵 <span class="math-inline">B</span></a>
</h2>
我们将其转化为一个等价的标准厄米特征值问题(HEP)。具体步骤如下:选择 <span class="math-inline">B</span> 的一个分解:
<div class="math-display" id="eq:B_GG">B=GG^*. \tag{5.26}</div>
于是,<span class="math-inline">A - \lambda B</span> 的广义特征值问题等价于 <span class="math-inline">G^{-1}AG^{-*}</span> 的标准HEP。两者共享相同的特征值,因为
<div class="math-display">Ax=\lambda B x\quad\Leftrightarrow\quad G^{-1}AG^{-*} (G^* x)=\lambda (G^* x),</div>
这也意味着,如果 <span class="math-inline">x</span> 是这对矩阵的特征向量,<span class="math-inline">G^* x</span> 就是矩阵 <span class="math-inline">G^{-1}AG^{-*}</span> 的特征向量;反之,如果 <span class="math-inline">y</span> 是 <span class="math-inline">G^{-1}AG^{-*}</span> 的特征向量,<span class="math-inline">G^{-*}y</span> 就是这对矩阵的特征向量。
<span class="math-inline">G</span> 的常见选择包括:
<ol>
<li><span class="math-inline">G=B^{1/2}</span>,即 <span class="math-inline">B</span> 的唯一正定平方根。在这种情况下,<span class="math-inline">G^*=G</span>。这种选择在理论研究中足够好。
</li>
<li><span class="math-inline">G</span> 是乔列斯基(Cholesky)因子;可选地带有枢轴变换,即 <span class="math-inline">G</span> 是下三角矩阵且对角线元素为正。这种选择在数值计算中更受欢迎。
</li>
<li>类似地,<span class="math-inline">G</span> 是上三角矩阵且对角线元素为正。它与第二种选择具有相同的优点。
</li>
</ol>
接下来,有时使用由正定矩阵 <span class="math-inline">M</span> 诱导的内积 <span class="math-inline">(\cdot\,,\,\cdot)_M</span>、相应的向量范数 <span class="math-inline">\Vert\cdot\Vert _M</span> 以及两向量间角度函数(更准确地说,是两个由向量张成的子空间之间的角度)<span class="math-inline">\theta_M(\,\cdot\,,\,\cdot\,)</span> 更为方便。在我们的情况下,<span class="math-inline">M=B</span> 或 <span class="math-inline">B^{-1}</span>。它们的定义如下:
<div class="math-display">
\begin{aligned}
(x,y)_M &\equiv y^*Mx,\\
\Vert x\Vert _M &\equiv \sqrt{(x,x)_M} \equiv \sqrt{x^*Mx},\\
\cos\theta_M(x,y) &\equiv \frac{(x,y)_M}{\Vert x\Vert _M\Vert y\Vert _M}.
\end{aligned}
</div>
当 <span class="math-inline">M=I</span> 时,这三者都简化为通常的定义。不难看出
<div class="math-display" id="ineq:M-2-nrm">\Vert M^{-1}\Vert _2^{-1/2} \Vert x\Vert _2\le\Vert x\Vert _M\le\Vert M\Vert _2^{1/2} \Vert x\Vert _2. \tag{5.27}</div>
通过一些额外的工作,我们可以将 <span class="math-inline">\theta_M</span> 与通常的角度函数联系起来,例如,当 <span class="math-inline">M=I</span> 时,如下所示:
<div class="math-display" id="ineq:aglM-agl">(2\kappa(M))^{-1/2} \sin\theta(x,y)\le\sin\theta_M(x,y)\le (2\kappa(M))^{1/2}\sin\theta(x,y). \tag{5.28}</div>
<p>
<br><hr>
<!--Table of Child-Links-->
<a name="CHILD_LINKS"><strong>子章节</strong></a>
<ul>
<li><a name="tex2html3443" href="node179.html">残差向量</a>
<li><a name="tex2html3444" href="node180.html">将残差误差转化为向后误差</a>
<li><a name="tex2html3445" href="node181.html">计算特征值的误差界限</a>
<li><a name="tex2html3446" href="node182.html">计算特征向量的误差界限</a>
<li><a name="tex2html3447" href="node183.html">关于聚类特征值的备注</a>
</ul>
<!--End of Table of Child-Links-->
<hr><!--Navigation Panel-->
<a name="tex2html3441" href="node179.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3435" href="node177.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3429" href="node177.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3437" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3439" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3442" href="node179.html">残差向量</a>
<b>上一级:</b><a name="tex2html3436" href="node177.html">稳定性与准确性评估</a>
<b>上一节:</b><a name="tex2html3430" href="node177.html">稳定性与准确性评估</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>