-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode180.html
116 lines (107 loc) · 6.48 KB
/
node180.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>将残差误差转化为后向误差</title>
<meta charset="utf-8">
<meta name="description" content="将残差误差转化为后向误差">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3474" href="node181.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3468" href="node178.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3462" href="node179.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3470" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3472" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3475" href="node181.html">计算特征值的误差界限</a>
<b>上一级:</b><a name="tex2html3469" href="node178.html">正定 <span class="math-inline">B</span></a>
<b>上一节:</b><a name="tex2html3463" href="node179.html">残差向量</a>
<br>
<br>
<!--End of Navigation Panel--><h4><a name="SECTION001471020000000000000"></a>
<a name="18194"></a>
将残差误差转化为后向误差
</h4>
可以证明存在厄米矩阵 <span class="math-inline">E</span>,例如
<div class="math-display" id="eq:E2-pdpBdef">E = -r\widetilde x^*-\widetilde x r^*+\left(\widetilde x^*A\widetilde x-\widetilde\lambda \widetilde x^*B\widetilde x \right)\widetilde x\widetilde x^*, \tag{5.29}</div>
使得 <span class="math-inline">\widetilde\lambda</span> 和 <span class="math-inline">\widetilde x</span> 是 <span class="math-inline">\{A+E,B\}</span> 的精确特征值及其对应的特征向量。
我们感兴趣的是那些范数尽可能小的矩阵 <span class="math-inline">E</span>。
事实证明,对于谱范数 <span class="math-inline">\Vert\cdot\Vert _2</span> 而言,最佳的 <span class="math-inline">E=E_2</span> 以及对于 Frobenius 范数 <span class="math-inline">\Vert\cdot\Vert _{F}</span> 而言,最佳的 <span class="math-inline">E=E_{F}</span> 满足
<div class="math-display" id="eq:pdpBdef-b2">\Vert E_2\Vert _2=\Vert r\Vert _2, \quad \Vert E_{F}\Vert_F = \sqrt{2\Vert r\Vert^2_2- (\widetilde x^* A\widetilde x-\widetilde\lambda\widetilde x^* B\widetilde x)^2}. \tag{5.30}</div>
参见 [<a href="node421.html#kapj82">256</a>,<a href="node421.html#sun98">431</a>,<a href="node421.html#hihi98">473</a>]。
实际上,<span class="math-inline">E_{F}</span> 由 (<a href="node180.html#eq:E2-pdpBdef">5.29</a>) 明确给出。
因此,如果 <span class="math-inline">\Vert r\Vert _2</span> 很小,那么计算得到的 <span class="math-inline">\widetilde\lambda</span> 和 <span class="math-inline">\widetilde x</span> 就是 <em>邻近</em> 矩阵的精确特征值和特征向量。
此类误差分析被称为 <em>后向误差分析</em>,而矩阵 <span class="math-inline">E</span> 则是 <em>后向误差</em>。
<p>
我们称一个算法在范数 <span class="math-inline">\Vert\cdot\Vert</span> 下对于近似特征对 <span class="math-inline">(\widetilde\lambda,\widetilde x)</span> 是 <em><span class="math-inline">\tau</span>-后向稳定</em> 的,如果它是 <span class="math-inline">\{A+E,B\}</span> 的精确特征对且 <span class="math-inline">\Vert E\Vert\le\tau</span>。
基于这些概念,可以对计算特征对 <span class="math-inline">(\widetilde\lambda,\widetilde x)</span> 的算法的后向稳定性进行论述。
按照惯例,如果 <span class="math-inline">\tau = O(\epsilon_M \Vert(A,B)\Vert)</span>,其中 <span class="math-inline">\epsilon_M</span> 是机器精度,则称该算法为 <em>后向稳定</em> 的。
<p>
<hr><!--Navigation Panel-->
<a name="tex2html3474" href="node181.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3468" href="node178.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3462" href="node179.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3470" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3472" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3475" href="node181.html">计算特征值的误差界限</a>
<b>上一级:</b><a name="tex2html3469" href="node178.html">正定 <span class="math-inline">B</span></a>
<b>上一节:</b><a name="tex2html3463" href="node179.html">残差向量</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>