-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode185.html
114 lines (104 loc) · 5.39 KB
/
node185.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<!DOCTYPE html>
<!--Converted with LaTeX2HTML 99.2beta6 (1.42)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<html>
<head>
<title>残差向量</title>
<meta charset="utf-8">
<meta name="description" content="残差向量">
<meta name="keywords" content="book, math, eigenvalue, eigenvector, linear algebra, sparse matrix">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
var math_displays = document.getElementsByClassName("math-display");
for (var i = 0; i < math_displays.length; i++) {
katex.render(math_displays[i].textContent, math_displays[i], { displayMode: true, throwOnError: false });
}
var math_inlines = document.getElementsByClassName("math-inline");
for (var i = 0; i < math_inlines.length; i++) {
katex.render(math_inlines[i].textContent, math_inlines[i], { displayMode: false, throwOnError: false });
}
});
</script>
<style>
.navigate {
background-color: #ffffff;
border: 1px solid black;
color: black;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 18px;
margin: 4px 2px;
cursor: pointer;
border-radius: 4px;
}
.crossref {
width: 10pt;
height: 10pt;
border: 1px solid black;
padding: 0;
}
</style>
</head>
<body>
<!--Navigation Panel-->
<a name="tex2html3545" href="node186.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3539" href="node184.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3533" href="node184.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3541" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3543" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3546" href="node186.html">将残差误差转化为后向误差</a>
<b>上一级:</b><a name="tex2html3540" href="node184.html">某些<span class="math-inline">A</span>与<span class="math-inline">B</span>的组合是正定矩阵</a>
<b>上一节:</b><a name="tex2html3534" href="node184.html">某些<span class="math-inline">A</span>与<span class="math-inline">B</span>的组合是正定矩阵</a>
<br>
<br>
<!--End of Navigation Panel-->
<h4><a name="SECTION001472010000000000000"></a>
<a name="18319"></a>
残差向量
</h4>
假设
<span class="math-inline">(\widetilde\alpha,\widetilde\beta)</span> 表示一个计算得到的特征值,而
<span class="math-inline">\widetilde x</span> 是其对应的计算特征向量。为了简化,我们对其进行归一化处理,使得
<div class="math-display">\Vert\widetilde x\Vert _2 = 1, \quad \vert\widetilde\alpha\vert^2+\vert\widetilde\beta\vert^2=1.</div>
对应的<em>残差向量</em>或<em>残差误差</em>定义为
<div class="math-display">r = \widetilde\beta A\widetilde x - \widetilde\alpha B\widetilde x.</div>
理想情况下,我们希望 <span class="math-inline">r=0</span>,但实际上 <span class="math-inline">\Vert r\Vert _2</span> 很小。可以想象,小的残差误差意味着计算得到的
<span class="math-inline">(\widetilde\alpha,\widetilde\beta)</span> 和 <span class="math-inline">\widetilde x</span> 具有良好的精度。我们感兴趣的是,在给定 <span class="math-inline">r</span> 的情况下,如何准确评估计算得到的
<span class="math-inline">(\widetilde\alpha,\widetilde\beta)</span> 和 <span class="math-inline">\widetilde x</span> 的精度。
<p>
<br><hr>
<!--Navigation Panel-->
<a name="tex2html3545" href="node186.html">
<button class="navigate">下一节</button></a>
<a name="tex2html3539" href="node184.html">
<button class="navigate">上一级</button></a>
<a name="tex2html3533" href="node184.html">
<button class="navigate">上一节</button></a>
<a name="tex2html3541" href="node5.html">
<button class="navigate">目录</button></a>
<a name="tex2html3543" href="node422.html">
<button class="navigate">索引</button></a>
<br>
<b>下一节:</b><a name="tex2html3546" href="node186.html">将残差误差转化为后向误差</a>
<b>上一级:</b><a name="tex2html3540" href="node184.html">某些<span class="math-inline">A</span>与<span class="math-inline">B</span>的组合是正定矩阵</a>
<b>上一节:</b><a name="tex2html3534" href="node184.html">某些<span class="math-inline">A</span>与<span class="math-inline">B</span>的组合是正定矩阵</a>
<!--End of Navigation Panel-->
<address>
Susan Blackford
2000-11-20
</address>
</body>
</html>