-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
354 lines (299 loc) · 11.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#! /usr/bin/python3
# coding: utf-8
"""Used to store different models."""
__author__ = "Ewen BRUN, Pierre HAON"
__email__ = "[email protected]"
import numpy as np
import numpy.linalg as nl
from math import sqrt
from db import fem
from modules.Computation import Matrix, DynamicArray
from modules import Elements
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
femEngine = create_engine('sqlite:///db/fem.db')
fem.Base.metadata.bind = femEngine
DBSession = sessionmaker()
DBSession.configure(bind=femEngine)
class Model:
"""Finite elements model base class."""
def __init__(self):
"""Init base class."""
self.elements = []
self.elementsClass = None
self.session = DBSession()
self.material = self.session.query(fem.Materials).first()
self.section = self.session.query(fem.Sections).first()
self._lenght = 1000
self._effortsRepartis = False
self.selected = 0
def elems(self, n):
"""Set elements number and mesh."""
self._nodes = n
self.mesh()
def mesh(self):
"""Mesh."""
self.elements = []
for i in range(0, self._nodes):
self.elements.append(self.elementsClass(self, i))
@property
def ddl(self):
"""Return degrees de liberte."""
return self.elements[0].k.shape[0] // 2
def K(self):
"""Return rigidity matrix."""
K = Matrix((self._nodes + 1) * self.ddl,
(self._nodes + 1) * self.ddl)
for i in range(0, self._nodes):
K.compose(self.elements[i].k, self.ddl * i, self.ddl * i)
return K
@property
def initial(self):
"""Return the initial poutre."""
return [0, self._lenght], [0, 0]
def __repr__(self):
"""Repr."""
return "Empty baseclass model"
class PoutreEnTraction(Model):
"""Model PoutreEnTraction from baseclass Model."""
def __init__(self):
"""Init super and current class."""
super().__init__()
self._D = 1
self.elementsClass = Elements.Bar
self.efforts = [[0, 1000, 0, 25, 0.003, 25]]
self.links = []
def applyWeight(self):
"""Apply weight to each node."""
for e, i in zip(self.elements, range(1, self._nodes)):
self._F._array[i] = - 9.81 * e.lenght * \
self.material.rho * self.section.S / 10e9
def solve(self, effort=10):
"""Solve model."""
K = self.K()
self._F = DynamicArray([0] * K.shape[0])
self._F._unk = [0]
self._K1 = K.removeNull(self._F._unk)
if self.selected == 0:
self._F._array[-1] = effort
elif self.selected == 1:
self._F._array[-1] = effort
self.applyWeight()
elif self.selected == 2:
self._F._array[-1] = 0
self.efforts = []
self.applyWeight()
elif self.selected == 3:
self._F._array[-1] = -1 * effort
self.efforts = [[0, 1045, 0, -25, 0.003, 25]]
elif self.selected == 4:
self._F._array[-1] = -1 * effort
self.efforts = [[0, 1045, 0, -25, 0.003, 25]]
self.applyWeight()
self._U = DynamicArray(nl.solve(self._K1, self._F.array()).tolist())
self._U.arrayFromNull(self._F._unk)
self._FR = np.asarray(np.dot(K, self._U._array))[0]
@property
def initial(self):
"""Return the initial poutre."""
return [0, 0], [0, self._lenght]
@property
def deformee(self):
"""Return deformée."""
u = np.cumsum(np.array(self._U._array))
d = np.linspace(0, self._lenght, self._nodes + 1)
y = [uu + dd for uu, dd in zip(u, d)]
x = [0] * (self._nodes + 1)
return [x, y]
@property
def deplacements(self):
"""Deformations."""
return np.array(self._U._array)
@property
def contraintes(self):
"""Contraintes."""
vonMises = []
for e, i in zip(self.elements, range(len(self.elements))):
vonMises.append(e.deformationsTensor(
self._U._array[i + 1] - self._U._array[i]).generalizedHooke().vonMises())
return vonMises
@property
def types(self):
"""Return conditions aux limites."""
return ["Traction", "Traction + Poids", "Poids Propre", "Compression", "Compression + Poids"]
@property
def legend(self):
"""Graph legend."""
return {"title": "Deformée poutre en Traction", 'xtitle': r'Distance en $mm$', 'ytitle': r'Deformée en $mm$'}
def __repr__(self):
"""Repr."""
return "Model Poutre en traction with %i-Dimension" % (self._D)
class PoutreEnFlexion(Model):
"""Model PoutreEnFlexion from baseclass Model."""
def __init__(self):
"""Init super and current class."""
super().__init__()
self._D = 2
self.elementsClass = Elements.Poutre
self._effortsRepartis = True
def partEffort(self, effort, array):
"""Part effort equally on an array."""
return [-1 * effort / self._nodes] * len(array)
def solve(self, effort=10, reparti=False):
"""Solve model."""
K = self.K()
self._F = DynamicArray([0] * K.shape[0])
if self.selected == 0:
self._F._unk = [0, 1]
self.efforts = [[self._lenght, 0, 0, -1, 20, 0.25]]
if reparti is False:
self._F._array[-2] = -1 * effort
else:
for i in range(1, 10):
self.efforts.append([self._lenght * i / 10, 0, 0, -1, 20, 0.25])
self._F._array[2::2] = self.partEffort(effort, self._F._array[2::2])
elif self.selected == 1:
self._F._unk = [0, 1, -2, -1]
self.efforts = [[self._lenght / 2, 0, 0, -0.04, 20, 0.01]]
if reparti is False:
self._F._array[self._nodes] = -1 * effort
else:
for i in [x for x in range(1, 11) if x != 5]:
self.efforts.append([self._lenght * i / 10, 0, 0, -0.04, 20, 0.01])
self._F._array[2:-1:2] = self.partEffort(effort, self._F._array[2:-1:2])
elif self.selected == 2:
self._F._unk = [0, -2]
self.efforts = [[self._lenght / 2, 0, 0, -0.1, 20, 0.05]]
if reparti is False:
self._F._array[len(self._F._array) // 2 + 1] = -1 * effort
else:
for i in range(1, 10):
self.efforts.append([self._lenght * i / 10, 0, 0, -0.1, 20, 0.05])
self._F._array[2:-1:2] = self.partEffort(effort, self._F._array[2:-1:2])
self._K1 = K.removeNull(self._F._unk)
self._U = DynamicArray(nl.solve(self._K1, self._F.array()).tolist())
self._U.arrayFromNull(self._F._unk)
self._FR = np.asarray(np.dot(K, self._U._array))[0]
@property
def deformee(self):
"""Deformée of model."""
proj = [0] + np.cumsum(self._lenght / self._nodes * np.cos(self._U._array[1::2])).tolist()
return proj[:-1:], self._U._array[::2]
@property
def deplacements(self):
"""Deformations."""
return self._U._array[::2]
@property
def contraintes(self):
"""Contraintes."""
vonMises = []
for e, i in zip(self.elements, range(len(self.elements))):
vonMises.append(e.deformationsTensor(self._U._array[2 * i + 2] - self._U._array[2 * i],
self._U._array[2 * i + 3] - self._U._array[2 * i + 1]).generalizedHooke().vonMises())
return vonMises
@property
def types(self):
"""Return conditions aux limites."""
return ["Encastrée et libre", "Encastrée et glissière", "Rotule et ponctuelle"]
@property
def legend(self):
"""Graph legend."""
return {"title": "Deformée poutre en flexion", 'xtitle': r'Distance en $mm$', 'ytitle': r'Deformée en $mm$'}
def __repr__(self):
"""Repr."""
return "Model Poutre en flexion with %i-Dimension" % (self._D)
class TreilliSimple(Model):
"""Model TreilliSimple from baseclass Model."""
def __init__(self):
"""Init super and current class."""
super().__init__()
self._D = 2
def mesh(self, index=0):
r"""
Mesh model.
3
/ \
1---2
"""
self.elements = []
if index is 0:
self._nodes = 3
Mesh = [[[1, 2], sqrt(2) * 100, 0], [[2, 3], 100, 3 * np.pi / 4], [[3, 1], -100, np.pi / 4]]
else:
self._nodes = 4
Mesh = [[[1, 2], 100, np.pi / 4], [[1, 3], 100 * sqrt(2), 0], [[2, 3], 100, 3 * np.pi / -4], [[2, 4], 100 * sqrt(2), 0], [[3, 4], 100, np.pi / 4]]
for e in Mesh:
self.elements.append(Elements.TreillisBar(self, e[0], e[1], e[2]))
def K(self, index=0):
"""Return rigidity matrix."""
K = Matrix((self._nodes) * 2, (self._nodes) * 2)
if index == 0:
K.compose(self.elements[0].k, 0, 0)
K.compose(self.elements[1].k, 2, 2)
for x in range(0, 4, 2):
for y in range(0, 4, 2):
K.compose(self.elements[2].k[np.ix_(
[x, x + 1], [y, y + 1])], x, y)
return K
def solve(self, effort=10):
"""Solve model."""
K = self.K()
self._F = DynamicArray([0] * K.shape[0])
if self.selected == 0:
self.efforts = [[sqrt(2)*100, 0, 0, -5, 2, 5]]
self._F._unk = [0, 1, -2]
self._F._array[-1] = -1 * effort
self._K1 = K.removeNull(self._F._unk)
self._U = DynamicArray(nl.solve(self._K1, self._F.array()).tolist())
self._U.arrayFromNull(self._F._unk)
self._FR = np.asarray(np.dot(K, self._U._array))[0]
def nodesCoordinates(self):
"""Return coordinates of the nodes."""
nodes = [[1, 0, 0]]
for startn in range(1, self._nodes + 1):
origin = nodes[startn - 1][1::]
for e in [i for i in self.elements if startn == i.nodes[0]]:
if e.nodes[1] not in [i[0] for i in nodes]:
nodes.append([e.nodes[1], origin[0] + e.lenght * np.cos(e.alpha), origin[0] + e.lenght * np.sin(e.alpha)])
return nodes
@property
def initial(self):
"""Initial."""
out, nodes = [[], []], self.nodesCoordinates()
nodes.append(nodes[0])
for n in nodes:
out[0].append(n[1])
out[1].append(n[2])
return out
@property
def deformee(self):
"""Return Deformée."""
return self.initial
@property
def deplacements(self):
"""Deformations."""
out = []
for e in self.elements:
a, b = e.nodes[0] - 1, e.nodes[1] - 1
out.append(sqrt((self._U._array[2*b] - self._U._array[2*a])**2+(self._U._array[2*b+1] - self._U._array[2*a+1])**2))
return out
@property
def contraintes(self):
"""Contraintes."""
vonMises = []
n = len(self.elements)
for e, i in zip(self.elements, range(n)):
vonMises.append(e.deformationsTensor(self._U._array[(2 * i + 2) % (2*n)] - self._U._array[(2 * i) % (2*n)],
self._U._array[(2 * i + 3) % (2*n)] - self._U._array[(2 * i + 1) % (2*n)]).generalizedHooke().vonMises())
return vonMises
@property
def types(self):
"""Return conditions aux limites."""
return ["Treillis simple"]
@property
def legend(self):
"""Graph legend."""
return {"title": "Treillis Simple", 'xtitle': r'Distance en $mm$', 'ytitle': r'Distance en $mm$'}
def __repr__(self):
"""Repr."""
return "Model TreilliSimple with %i-Dimension" % (self._D)