-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathmain.py
158 lines (145 loc) · 5.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from config import Config
from feature_engineering.data_engineering import data_engineer_benchmark, span_data_2d, span_data_3d
import logging
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import sys
import pickle
import dgl
from scipy.io import loadmat
import yaml
logger = logging.getLogger(__name__)
# sys.path.append("..")
def parse_args():
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter,
conflict_handler='resolve')
parser.add_argument("--method", default=str) # specify which method to use
method = vars(parser.parse_args())['method'] # dict
# if method in ['']:
# yaml_file = "config/base_cfg.yaml"
if method in ['mcnn']:
yaml_file = "config/mcnn_cfg.yaml"
elif method in ['stan']:
yaml_file = "config/stan_cfg.yaml"
elif method in ['stan_2d']:
yaml_file = "config/stan_2d_cfg.yaml"
elif method in ['stagn']:
yaml_file = "config/stagn_cfg.yaml"
elif method in ['gtan']:
yaml_file = "config/gtan_cfg.yaml"
elif method in ['rgtan']:
yaml_file = "config/rgtan_cfg.yaml"
elif method in ['hogrl']:
yaml_file = "config/hogrl_cfg.yaml"
else:
raise NotImplementedError("Unsupported method.")
# config = Config().get_config()
with open(yaml_file) as file:
args = yaml.safe_load(file)
args['method'] = method
return args
def base_load_data(args: dict):
# load S-FFSD dataset for base models
data_path = "data/S-FFSD.csv"
feat_df = pd.read_csv(data_path)
train_size = 1 - args['test_size']
method = args['method']
# for ICONIP16 & AAAI20
if args['method'] == 'stan':
if os.path.exists("data/tel_3d.npy"):
return
features, labels = span_data_3d(feat_df)
else:
if os.path.exists("data/tel_2d.npy"):
return
features, labels = span_data_2d(feat_df)
num_trans = len(feat_df)
trf, tef, trl, tel = train_test_split(
features, labels, train_size=train_size, stratify=labels, shuffle=True)
trf_file, tef_file, trl_file, tel_file = args['trainfeature'], args[
'testfeature'], args['trainlabel'], args['testlabel']
np.save(trf_file, trf)
np.save(tef_file, tef)
np.save(trl_file, trl)
np.save(tel_file, tel)
return
def main(args):
if args['method'] == 'mcnn':
from methods.mcnn.mcnn_main import mcnn_main
base_load_data(args)
mcnn_main(
args['trainfeature'],
args['trainlabel'],
args['testfeature'],
args['testlabel'],
epochs=args['epochs'],
batch_size=args['batch_size'],
lr=args['lr'],
device=args['device']
)
elif args['method'] == 'stan_2d':
from methods.stan.stan_2d_main import stan_main
base_load_data(args)
stan_main(
args['trainfeature'],
args['trainlabel'],
args['testfeature'],
args['testlabel'],
mode='2d',
epochs=args['epochs'],
batch_size=args['batch_size'],
attention_hidden_dim=args['attention_hidden_dim'],
lr=args['lr'],
device=args['device']
)
elif args['method'] == 'stan':
from methods.stan.stan_main import stan_main
base_load_data(args)
stan_main(
args['trainfeature'],
args['trainlabel'],
args['testfeature'],
args['testlabel'],
mode='3d',
epochs=args['epochs'],
batch_size=args['batch_size'],
attention_hidden_dim=args['attention_hidden_dim'],
lr=args['lr'],
device=args['device']
)
elif args['method'] == 'stagn':
from methods.stagn.stagn_main import stagn_main, load_stagn_data
features, labels, g = load_stagn_data(args)
stagn_main(
features,
labels,
args['test_size'],
g,
mode='2d',
epochs=args['epochs'],
attention_hidden_dim=args['attention_hidden_dim'],
lr=args['lr'],
device=args['device']
)
elif args['method'] == 'gtan':
from methods.gtan.gtan_main import gtan_main, load_gtan_data
feat_data, labels, train_idx, test_idx, g, cat_features = load_gtan_data(
args['dataset'], args['test_size'])
gtan_main(
feat_data, g, train_idx, test_idx, labels, args, cat_features)
elif args['method'] == 'rgtan':
from methods.rgtan.rgtan_main import rgtan_main, loda_rgtan_data
feat_data, labels, train_idx, test_idx, g, cat_features, neigh_features = loda_rgtan_data(
args['dataset'], args['test_size'])
rgtan_main(feat_data, g, train_idx, test_idx, labels, args,
cat_features, neigh_features, nei_att_head=args['nei_att_heads'][args['dataset']])
elif args['method'] == 'hogrl':
from methods.hogrl.hogrl_main import hogrl_main
hogrl_main(args)
else:
raise NotImplementedError("Unsupported method. ")
if __name__ == "__main__":
main(parse_args())