-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathannotate.py
228 lines (177 loc) · 8.1 KB
/
annotate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
Contains code to annotate all the videos in a specific folder using TSM
"""
import os
import cv2
import json
import math
import torch
import pickle
import argparse
from detector import TSM_detector
# Number of frames to buffer
BUFFER_SIZE = 30
fps_120 = ['548', '694', '616']
def _generate_metrics(investigation_times, novel_location, start_frame=0, fps=30.):
# print(investigation_times)
n = len(investigation_times["left"]) + len(investigation_times["right"])
cd = (sum(i for _, i in investigation_times["left"]) +
sum(i for _, i in investigation_times["right"])) / fps
me = 1. * cd / n
if investigation_times["left"]:
_lf = investigation_times["left"][0][0]
_ll = investigation_times["left"][-1][0]
else:
_lf = math.inf
_ll = fps*300 ## End of the experiment
if investigation_times["right"]:
_lf = min(_lf, investigation_times["right"][0][0])
_ll = max(_ll, investigation_times["right"][-1][0])
lf = (_lf - start_frame) / fps
ll = (_ll - start_frame) / fps
RI = sum(i for _, i in investigation_times[novel_location]) / (cd * fps)
return {
"n" : n,
"cd": cd,
"me": me,
"lf": lf,
"ll": ll,
"RI": RI
}
def generate_metrics(annotation_dict, novel_location, start_frame=0, fps=30):
"""
Generates the following metrics:
n: total number of investigations
cd: total time spent investigating
me: average amount of time for any one investigation
lf: latency to the first investigation
ll: latency to the last investigation
RI (recognition index): the amount of time spent investigating the novel
object compared to the total amount of time investigating both objects
"""
assert novel_location in ["left", "right"]
sorted_keys = sorted([int(k) for k in annotation_dict["data"].keys()])
annotation_list = [(annotation_dict["data"][str(k)]["action"], annotation_dict["data"][str(k)]["location"]) for k in sorted_keys]
investigation_times = {
"left" : [],
"right" : []
}
in_investigate, time_elapsed = None, 0
for prediction, location in annotation_list:
# If the current prediction is investigate
if prediction == "investigate":
# And if it was an ongoing investigation
if in_investigate is not None:
# And if the pig is at the same location, then simply increment
if in_investigate == location:
investigation_times[location][-1][1] += BUFFER_SIZE
# If the location has changed from left to right, then initiate another investigation
else:
in_investigate = location
investigation_times[location].append([time_elapsed, BUFFER_SIZE])
# Start an investigation
else:
in_investigate = location
investigation_times[location].append([time_elapsed, BUFFER_SIZE])
time_elapsed += BUFFER_SIZE
# Set as "No investigation"
else:
in_investigate = None
time_elapsed += BUFFER_SIZE
return _generate_metrics(investigation_times, novel_location, start_frame, fps)
def generate_annotations(base_dir, video_path, json_dir='./'):
video_name = video_path.split('/')[-1].split('.')[0]
json_path = os.path.join(json_dir, "%s.json" % video_name)
if os.path.exists(json_path):
with open(json_path, "r") as f:
annotation_dict = json.load(f)
annotation_dict["metrics"] = generate_metrics(annotation_dict,
annotation_dict["novel_location"],
annotation_dict["start_frame"],
fps=120 if ('548' in video_path
or '694' in video_path or '616' in video_path) else 30)
# print(video_name, annotation_dict["metrics"])
with open(json_path, "w") as f:
json.dump(annotation_dict, f, indent=4)
else:
annotation_dict = {
"video_name": video_name,
"data": {}
}
# Setup reading from video stream
video_path = os.path.join(base_dir, video_path)
video_stream = cv2.VideoCapture(video_path)
w, h, video_fps = int(video_stream.get(3)), int(video_stream.get(4)), video_stream.get(5)
out = cv2.VideoWriter(f"{video_name}-prediction.mp4", cv2.VideoWriter_fourcc(*'mp4v'), video_fps, (w, h))
frame_id, frame_buffer = 0, []
with torch.no_grad():
while True:
ret, frame = video_stream.read()
if frame is None:
break
height, width, _ = frame.shape
frame_id += 1
# Buffer to annotate the original video
frame_buffer.append(frame)
# Collect and predict action for 30 frames
if len(frame_buffer) == BUFFER_SIZE:
prediction, score = detector.detect(frame_buffer)
location = detector.detect_location(frame_buffer[-1].copy()) if prediction == "investigate" else "None"
print("%d %s %f %s" % (frame_id, prediction, score, location))
annotation_dict["data"][frame_id] = {
"action": prediction,
"confd": score,
"location": location
}
for f in frame_buffer:
cv2.putText(f,"%s %s: %f"%("" if location == "None" else location, prediction, score),
(30,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0),2,cv2.LINE_AA)
out.write(f)
# Reset the buffer
frame_buffer = []
out.release()
video_stream.release()
return annotation_dict
if __name__ == '__main__':
# if __name__ == '__not_main__':
parser = argparse.ArgumentParser(description="PNCL NOR Action Annotation")
parser.add_argument('--video_path', '-v', required=True, help="Path to the video to be annotated")
parser.add_argument('--checkpoint_path', '-c', required=True, help="Path to checkpoint")
parser.add_argument('--mask_path', '-m', required=True, help="Path to Mask image")
parser.add_argument('--json_dir', '-j', required=True, help="Directory where JSON files are saved")
args = parser.parse_args()
# Load TSM detector
detector = TSM_detector("RGB", args.checkpoint_path, args.mask_path)
# Annotate the video
annotation_dict = generate_annotations('./', args.video_path, args.json_dir)
# if __name__ == '__main__':
if __name__ == '__not_main__':
import pandas as pd
parser = argparse.ArgumentParser(description="PNCL NOR Action Annotation")
parser.add_argument('--video_path', '-v', required=True, help="Path to the video to be annotated")
parser.add_argument('--checkpoint_path', '-c', required=True, help="Path to checkpoint")
parser.add_argument('--mask_path', '-m', required=True, help="Path to Mask image")
parser.add_argument('--json_dir', '-j', required=True, help="Directory where JSON files are saved")
args = parser.parse_args()
# Load TSM detector
detector = TSM_detector("RGB", args.checkpoint_path, args.mask_path)
# Obtain list of videos
video_list = os.listdir(args.video_path)
print("Processing %d videos" % len(video_list))
metrics_df_dict = {
'filename': [],
'n': [],
'cd': [],
'me': [],
'lf': [],
'll': [],
'RI': []
}
for video_p in video_list:
annotation_dict = generate_annotations('./', os.path.join(args.video_path, video_p), args.json_dir)
metrics_df_dict['filename'].append(video_p.split('.')[0])
for k, val in annotation_dict["metrics"].items():
metrics_df_dict[k].append(val)
metrics_df = pd.DataFrame(metrics_df_dict)
print(metrics_df)
metrics_df.to_csv('analysis/ai_metrics.csv', index=False)