forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
avl_tree.py
345 lines (293 loc) · 9.36 KB
/
avl_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
"""
Implementation of an auto-balanced binary tree!
For doctests run following command:
python3 -m doctest -v avl_tree.py
For testing run:
python avl_tree.py
"""
from __future__ import annotations
import math
import random
from typing import Any
class MyQueue:
def __init__(self) -> None:
self.data: list[Any] = []
self.head: int = 0
self.tail: int = 0
def is_empty(self) -> bool:
return self.head == self.tail
def push(self, data: Any) -> None:
self.data.append(data)
self.tail = self.tail + 1
def pop(self) -> Any:
ret = self.data[self.head]
self.head = self.head + 1
return ret
def count(self) -> int:
return self.tail - self.head
def print_queue(self) -> None:
print(self.data)
print("**************")
print(self.data[self.head : self.tail])
class MyNode:
def __init__(self, data: Any) -> None:
self.data = data
self.left: MyNode | None = None
self.right: MyNode | None = None
self.height: int = 1
def get_data(self) -> Any:
return self.data
def get_left(self) -> MyNode | None:
return self.left
def get_right(self) -> MyNode | None:
return self.right
def get_height(self) -> int:
return self.height
def set_data(self, data: Any) -> None:
self.data = data
def set_left(self, node: MyNode | None) -> None:
self.left = node
def set_right(self, node: MyNode | None) -> None:
self.right = node
def set_height(self, height: int) -> None:
self.height = height
def get_height(node: MyNode | None) -> int:
if node is None:
return 0
return node.get_height()
def my_max(a: int, b: int) -> int:
if a > b:
return a
return b
def right_rotation(node: MyNode) -> MyNode:
r"""
A B
/ \ / \
B C Bl A
/ \ --> / / \
Bl Br UB Br C
/
UB
UB = unbalanced node
"""
print("left rotation node:", node.get_data())
ret = node.get_left()
assert ret is not None
node.set_left(ret.get_right())
ret.set_right(node)
h1 = my_max(get_height(node.get_right()), get_height(node.get_left())) + 1
node.set_height(h1)
h2 = my_max(get_height(ret.get_right()), get_height(ret.get_left())) + 1
ret.set_height(h2)
return ret
def left_rotation(node: MyNode) -> MyNode:
"""
a mirror symmetry rotation of the left_rotation
"""
print("right rotation node:", node.get_data())
ret = node.get_right()
assert ret is not None
node.set_right(ret.get_left())
ret.set_left(node)
h1 = my_max(get_height(node.get_right()), get_height(node.get_left())) + 1
node.set_height(h1)
h2 = my_max(get_height(ret.get_right()), get_height(ret.get_left())) + 1
ret.set_height(h2)
return ret
def lr_rotation(node: MyNode) -> MyNode:
r"""
A A Br
/ \ / \ / \
B C LR Br C RR B A
/ \ --> / \ --> / / \
Bl Br B UB Bl UB C
\ /
UB Bl
RR = right_rotation LR = left_rotation
"""
left_child = node.get_left()
assert left_child is not None
node.set_left(left_rotation(left_child))
return right_rotation(node)
def rl_rotation(node: MyNode) -> MyNode:
right_child = node.get_right()
assert right_child is not None
node.set_right(right_rotation(right_child))
return left_rotation(node)
def insert_node(node: MyNode | None, data: Any) -> MyNode | None:
if node is None:
return MyNode(data)
if data < node.get_data():
node.set_left(insert_node(node.get_left(), data))
if (
get_height(node.get_left()) - get_height(node.get_right()) == 2
): # an unbalance detected
left_child = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
node = right_rotation(node)
else:
node = lr_rotation(node)
else:
node.set_right(insert_node(node.get_right(), data))
if get_height(node.get_right()) - get_height(node.get_left()) == 2:
right_child = node.get_right()
assert right_child is not None
if data < right_child.get_data():
node = rl_rotation(node)
else:
node = left_rotation(node)
h1 = my_max(get_height(node.get_right()), get_height(node.get_left())) + 1
node.set_height(h1)
return node
def get_right_most(root: MyNode) -> Any:
while True:
right_child = root.get_right()
if right_child is None:
break
root = right_child
return root.get_data()
def get_left_most(root: MyNode) -> Any:
while True:
left_child = root.get_left()
if left_child is None:
break
root = left_child
return root.get_data()
def del_node(root: MyNode, data: Any) -> MyNode | None:
left_child = root.get_left()
right_child = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
temp_data = get_left_most(right_child)
root.set_data(temp_data)
root.set_right(del_node(right_child, temp_data))
elif left_child is not None:
root = left_child
elif right_child is not None:
root = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print("No such data")
return root
else:
root.set_left(del_node(left_child, data))
# root.get_data() < data
elif right_child is None:
return root
else:
root.set_right(del_node(right_child, data))
if get_height(right_child) - get_height(left_child) == 2:
assert right_child is not None
if get_height(right_child.get_right()) > get_height(right_child.get_left()):
root = left_rotation(root)
else:
root = rl_rotation(root)
elif get_height(right_child) - get_height(left_child) == -2:
assert left_child is not None
if get_height(left_child.get_left()) > get_height(left_child.get_right()):
root = right_rotation(root)
else:
root = lr_rotation(root)
height = my_max(get_height(root.get_right()), get_height(root.get_left())) + 1
root.set_height(height)
return root
class AVLtree:
"""
An AVL tree doctest
Examples:
>>> t = AVLtree()
>>> t.insert(4)
insert:4
>>> print(str(t).replace(" \\n","\\n"))
4
*************************************
>>> t.insert(2)
insert:2
>>> print(str(t).replace(" \\n","\\n").replace(" \\n","\\n"))
4
2 *
*************************************
>>> t.insert(3)
insert:3
right rotation node: 2
left rotation node: 4
>>> print(str(t).replace(" \\n","\\n").replace(" \\n","\\n"))
3
2 4
*************************************
>>> t.get_height()
2
>>> t.del_node(3)
delete:3
>>> print(str(t).replace(" \\n","\\n").replace(" \\n","\\n"))
4
2 *
*************************************
"""
def __init__(self) -> None:
self.root: MyNode | None = None
def get_height(self) -> int:
return get_height(self.root)
def insert(self, data: Any) -> None:
print("insert:" + str(data))
self.root = insert_node(self.root, data)
def del_node(self, data: Any) -> None:
print("delete:" + str(data))
if self.root is None:
print("Tree is empty!")
return
self.root = del_node(self.root, data)
def __str__(
self,
) -> str: # a level traversale, gives a more intuitive look on the tree
output = ""
q = MyQueue()
q.push(self.root)
layer = self.get_height()
if layer == 0:
return output
cnt = 0
while not q.is_empty():
node = q.pop()
space = " " * int(math.pow(2, layer - 1))
output += space
if node is None:
output += "*"
q.push(None)
q.push(None)
else:
output += str(node.get_data())
q.push(node.get_left())
q.push(node.get_right())
output += space
cnt = cnt + 1
for i in range(100):
if cnt == math.pow(2, i) - 1:
layer = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def _test() -> None:
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
t = AVLtree()
lst = list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))