-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_offline.py
534 lines (440 loc) · 22.9 KB
/
train_offline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import os
import json
import math
import argparse
import torch
import random
import numpy as np
from collections import defaultdict
from tqdm import tqdm
from datetime import datetime as dt
from torch import optim
from torch.nn.utils import clip_grad_norm_
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.nn.utils.rnn import pad_sequence
from collections import Counter, OrderedDict
from models.bunt_model import Encoder, Decoder, Bunt
from utils import random_seed, save_dependencies, last_commit_msg
from sklearn.metrics import f1_score, accuracy_score
from sklearn.utils.class_weight import compute_class_weight
import warnings
warnings.filterwarnings('ignore')
MORE = 4
MIN = 1e-6
MAX = 1e6
LARGE = 4
TER = 20
SIZE = 8
torch.multiprocessing.set_sharing_strategy('file_system')
# --------
# Dataset
# --------
class Dataset(torch.utils.data.Dataset):
def __init__(self, path, mode, args):
self.args = args
self.mode = mode
self.train = json.load(
open(os.path.join(path, "processed", "user_bundle_offline.json"), "r"))
self.train = {int(u): self.train[u] for u in self.train}
self.item_set = json.load(
open(os.path.join(path, "raw", "item_id_lookup.json"), "r"))
self.item_size = self.pad_token = len(self.item_set)
self.eos_token = len(self.item_set) + 1
self.bos_token = len(self.item_set) + 2
self.mask_token = len(self.item_set) + 3
if self.mode == 'train':
# mask one of the bundle for training
self.users = [u for u in self.train if len(self.train[u]) >= 2]
else:
assert self.mode == 'valid' or self.mode == 'test', 'mode should be `valid` or `test`'
self.data = json.load(
open(os.path.join(path, "processed", f"user_bundle_{self.mode}.json"), "r"))
self.data = {int(u): self.data[u][0] for u in self.data}
self.users = list(self.data.keys())
self.item2cateid, self.cate2id, self.cate_set, self.cate_num, self.max_cate_len = self._load_side(path, tag='cate')
self.item2attrid, self.attr2id, self.attr_set, self.attr_num, self.max_attr_len = self._load_side(path, tag='attr')
self.cate_pad_token = self.cate_num
self.attr_pad_token = self.attr_num
self.args.cate_reweights = self._reweight(tag='cate')
self.args.attr_reweights = self._reweight(tag='attr')
def __len__(self):
return len(self.users)
def __getitem__(self, index):
# basic info
u = self.users[index]
train = self.train[u]
# pure masking
u, src, trg, par = self._gen_task(u, train)
# side masking
cate_pos, cate_neg, cate_trg = self._tag_task(trg, 'cate')
attr_pos, attr_neg, attr_trg = self._tag_task(trg, 'attr')
# return
return {
'u': torch.LongTensor([u]), 'src': torch.LongTensor(src), 'trg': torch.LongTensor(trg), 'par': torch.LongTensor(par),
'cate_pos': torch.LongTensor(cate_pos), 'cate_neg': torch.LongTensor(cate_neg), 'cate_trg': torch.LongTensor(cate_trg),
'attr_pos': torch.LongTensor(attr_pos), 'attr_neg': torch.LongTensor(attr_neg), 'attr_trg': torch.LongTensor(attr_trg)
}
def _load_side(self, path, tag='cate'):
# load tag mapping
item2tagid = json.load(open(os.path.join(path, "raw", f"item_{tag}.json"), "r"))
item2tagid = {int(i): item2tagid[i] for i in item2tagid}
# load tag info
tag2id = json.load(open(os.path.join(path, "raw", f"{tag}_id_lookup.json"), "r"))
tag_set = set(tag2id.values())
tag_num = max(tag_set) + 1
max_tag_len = max(len(i) for i in item2tagid.values())
# return
return item2tagid, tag2id, tag_set, tag_num, max_tag_len
def _reweight(self, tag='cate'):
item2tagid = self.item2cateid if tag == 'cate' else self.item2attrid
tag_pad_token = self.cate_pad_token if tag == 'cate' else self.attr_pad_token
tag_pool = []
for u in self.train:
for b in self.train[u]:
for i in b:
if i in item2tagid:
tag_pool.extend(item2tagid[i])
unique_tags = list(np.unique(tag_pool))
temp_tag_reweights = list(compute_class_weight(class_weight='balanced', classes=unique_tags, y=tag_pool))
reweights = [0] * (tag_pad_token + 1)
for i, w in zip(unique_tags, temp_tag_reweights):
reweights[i] = w
return torch.Tensor(reweights).cuda()
def _gen_task(self, u, train):
inputs = []
if self.mode == 'train':
# leave one out
i = random.randint(0, len(train)-1)
for j, items in enumerate(train):
if i != j:
inputs.append([self.mask_token] + items[:SIZE] +
[self.pad_token]*(SIZE-len(items)))
# target or mask_target
target = train[i][:self.args.max_size] + [self.eos_token]
cut_length = random.randint(1, len(target))
target = [self.bos_token] + target[:cut_length]
par = target.copy()
for _ in range(self.args.delta_len):
mask_id = random.randint(1, cut_length)
par[mask_id] = self.mask_token
else:
# user all user history
for items in train:
inputs.append([self.mask_token] + items[:SIZE] +
[self.pad_token]*(SIZE-len(items)))
# target from valid or test
target = self.data[u][:self.args.max_size]
target = [self.bos_token] + target + \
[self.pad_token] * (self.args.max_size - len(target))
par = [self.pad_token]
return u, inputs, target, par
def _tag_task(self, target, tag='cate'):
# tag info
item2tagid = self.item2cateid if tag == 'cate' else self.item2attrid
tag_pad_token = self.cate_pad_token if tag == 'cate' else self.attr_pad_token
tag_set = self.cate_set if tag == 'cate' else self.attr_set
max_tag_len = self.max_cate_len if tag == 'cate' else self.max_attr_len
# tag flag
pos_flag = args.is_cate_pos if tag == 'cate' else args.is_attr_pos
neg_flag = args.is_cate_neg if tag == 'cate' else args.is_attr_neg
# pos samples
mask_set = set([i for i in range(len(target)) if random.uniform(0, 1) <= self.args.pos_mask_prob]) if pos_flag else set([])
tag_pos = [random.choice(item2tagid[i]) if i in item2tagid and idx not in mask_set and len(
item2tagid[i]) else tag_pad_token for idx, i in enumerate(target)]
# neg samples
mask_set = set([i for i in range(len(target)) if random.uniform(0, 1) <= self.args.neg_mask_prob]) if neg_flag else set([])
tag_neg = [random.choice(list(tag_set - set(item2tagid[i])))
if i in item2tagid and idx not in mask_set else tag_pad_token for idx, i in enumerate(target)]
# targets
tag_target = [item2tagid[t] + [tag_pad_token] * (max_tag_len - len(
item2tagid[t])) if t in item2tagid else [tag_pad_token] * max_tag_len for t in target]
return tag_pos, tag_neg, tag_target
# ---------------------
# Evaluation
# ---------------------
def evaluate(model, val_iter, dataset=None, args=None, mode='test'):
with torch.no_grad():
model.eval()
metrics = defaultdict(list)
instances = {}
preds = []
for b, batch in tqdm(enumerate(val_iter)):
u, src, trg = batch['u'], batch['src'].cuda(), batch['trg'].cuda()
cate_pos, attr_pos, cate_trg, attr_trg = \
batch['cate_pos'].cuda(), batch['attr_pos'].cuda(), batch['cate_trg'].cuda(), batch['attr_trg'].cuda()
# pure seq
output, _, _, _ = model.generate(src, delta_len=args.max_size)
for i in range(trg.size(1)):
trgs = set(trg[1:, i].tolist()) - {args.pad, args.eos, args.bos}
pred = []
for j in output[1:, i].max(1)[-1].tolist():
if j in {args.pad, args.bos}: continue
elif j == args.eos: break
else: pred.append(j)
instances[u[i].item()] = {
'all_set': list(pred),
'target_set': list(trgs),
'partial_set': list(trgs & set(pred))
}
pred = set(pred)
metrics['acc'].append(len(trgs & pred) / len(trgs | pred))
metrics['prec'].append(len(trgs & pred) / len(pred) if len(pred) else 0)
metrics['rec'].append(len(trgs & pred) / len(trgs))
preds.append(tuple(sorted(list(pred))))
# side seq
side_output, cate_output, attr_output, conv_output = model.generate(src, delta_len=args.max_size, cate_pos=cate_pos, attr_pos=attr_pos)
## predict cate & attr
_, cate_acc = side_loss_and_acc(cate_output.view(-1, cate_output.size(-1)), cate_trg.view(-1, cate_trg.size(-1)), pad=args.cate_pad, reweights=args.cate_reweights)
metrics['cate_acc'].append(cate_acc)
_, attr_acc = side_loss_and_acc(attr_output.view(-1, attr_output.size(-1)), attr_trg.view(-1, attr_trg.size(-1)), pad=args.attr_pad, reweights=args.attr_reweights)
metrics['attr_acc'].append(attr_acc)
## predict conv
cmp_conv_output = conv_output.view(-1, conv_output.size(-1)).squeeze(dim=-1)
item_hits, side_hits = create_conv_label(side_output.view(-1, side_output.size(-1)), trg.flatten(), cate_output.view(-1, cate_output.size(-1)), \
cate_trg.view(-1, cate_trg.size(-1)), cate_pos.flatten(), attr_output.view(-1, attr_output.size(-1)), attr_trg.view(-1, attr_trg.size(-1)), attr_pos.flatten())
valid_cmp_conv = cmp_conv_output[(item_hits + side_hits) != 0].argmax(dim=-1).tolist()
valid_label = item_hits[(item_hits + side_hits) != 0].tolist()
metrics['conv_ratio'].append(np.mean(valid_cmp_conv) if len(valid_cmp_conv) else 0)
metrics['conv_acc'].append(accuracy_score(valid_label, valid_cmp_conv))
metrics['conv_f1'].append(f1_score(valid_label, valid_cmp_conv))
## predict items
for i in range(trg.size(1)):
trgs = set(trg[1:, i].tolist()) - {args.pad, args.eos, args.bos}
pred = set([])
for j in side_output[1:, i].max(1)[-1].tolist():
if j in {args.pad, args.bos}: continue
elif j == args.eos: break
else: pred.add(j)
metrics['side_acc'].append(len(trgs & pred) / len(trgs | pred))
metrics['side_prec'].append(len(trgs & pred) / len(pred) if len(pred) else 0)
metrics['side_rec'].append(len(trgs & pred) / len(trgs))
metrics = OrderedDict({i: np.mean(metrics[i]) for i in metrics})
metrics['f1'] = (2 * metrics['rec'] * metrics['prec'] / (metrics['rec'] + metrics['prec']))
return metrics, instances
# ---------------------
# Training
# ---------------------
def train(e, model, optimizer, train_iter, args):
model.train()
metrics = defaultdict(list)
tqdm_iter = tqdm(train_iter)
for b, batch in enumerate(tqdm_iter):
src, trg, par = batch['src'].cuda(), batch['trg'].cuda(), batch['par'].cuda()
cate_pos, cate_trg, attr_pos, attr_trg = \
batch['cate_pos'].cuda(), batch['cate_trg'].cuda(), batch['attr_pos'].cuda(), batch['attr_trg'].cuda()
optimizer.zero_grad()
# generation loss
output, cate_output, attr_output, conv_output = model(src, par)
# normal
cmp_output = output[par == args.mask]
cmp_target = trg[par == args.mask]
loss = F.nll_loss(cmp_output, cmp_target, ignore_index=args.pad)
metrics['acc'].append((cmp_output.max(dim=-1)[-1] == cmp_target).float().mean().item())
# tags
side_output, cate_output, attr_output, conv_output = model(src, par, cate_pos=cate_pos, attr_pos=attr_pos)
cate_loss, cate_acc = side_loss_and_acc(cate_output[par==args.mask], cate_trg[par==args.mask], pad=args.cate_pad, reweights=args.cate_reweights)
attr_loss, attr_acc = side_loss_and_acc(attr_output[par==args.mask], attr_trg[par==args.mask], pad=args.attr_pad, reweights=args.attr_reweights)
metrics['cate_acc'].append(cate_acc)
metrics['attr_acc'].append(attr_acc)
side_loss = F.nll_loss(side_output[par == args.mask], trg[par == args.mask], ignore_index=args.pad)
cmp_conv_output = conv_output[par == args.mask].squeeze(dim=-1)
item_hits, side_hits = create_conv_label(side_output[par == args.mask], trg[par == args.mask], cate_output[par==args.mask], \
cate_trg[par==args.mask], cate_pos[par==args.mask], attr_output[par==args.mask], attr_trg[par==args.mask], attr_pos[par==args.mask])
conv_loss = (- (item_hits * cmp_conv_output[:, 1]) - (1-item_hits) * cmp_conv_output[:, 0])[(item_hits + side_hits) != 0].sum() / (((item_hits + side_hits) != 0).sum() + MIN)
valid_cmp_conv = cmp_conv_output[(item_hits + side_hits) != 0].argmax(dim=-1).tolist()
valid_label = item_hits[(item_hits + side_hits) != 0].tolist()
metrics['conv_ratio'].append(np.mean(valid_cmp_conv) if len(valid_cmp_conv) else 0)
metrics['conv_acc'].append(accuracy_score(valid_label, valid_cmp_conv))
metrics['conv_f1'].append(f1_score(valid_label, valid_cmp_conv))
# multi loss
loss += side_loss + args.cate_coeff * cate_loss + args.attr_coeff * attr_loss + args.conv_coeff * conv_loss
loss.backward()
optimizer.step()
metrics['loss'].append(loss.item())
tqdm_iter.set_description(f"[Epoch {e}] " + " | ".join([m + ':' + f'{np.mean(metrics[m]):.4f}' for m in metrics]))
def side_loss_and_acc(output, trg, pad, reweights):
# loss
trg_ = torch.zeros(trg.size(0), pad+1, device=trg.device)
trg_[torch.arange(trg.size(0)).unsqueeze(-1), trg] = 1
trg_ = trg_ * reweights.unsqueeze(dim=0)
loss = - (output * trg_).sum(dim=-1).mean()
# acc
acc, num = 0, 0
for p, t in zip(output.argmax(dim=-1).tolist(), trg):
t = set(t.tolist()) - {pad}
acc += int(p in t)
num += int(len(t) > 0)
return loss, acc / num
def create_conv_label(item_output, item_target, cate_output, cate_target, cate_exists, attr_output, attr_target, attr_exists):
# item
item_pred = item_output.argmax(dim=-1) # (b, )
item_hits = (item_target == item_pred) # (b, )
# cate
cate_output[torch.arange(cate_exists.size(0)), cate_exists] = - MAX
cate_pred = cate_output.argmax(dim=-1) # (b, )
cate_hits = (cate_pred != args.cate_pad) & (cate_pred.unsqueeze(dim=-1) == cate_target).sum(dim=-1).bool()
# attr
attr_output[torch.arange(attr_exists.size(0)), attr_exists] = - MAX
attr_pred = attr_output.argmax(dim=-1) # (b, )
attr_hits = (attr_pred != args.attr_pad) & (attr_pred.unsqueeze(dim=-1) == attr_target).sum(dim=-1).bool()
return item_hits.float(), (cate_hits | attr_hits).float()
# ---------------------
# Main Function
# ---------------------
def main(data_path, args, pretrained_weights=None):
terminate_cnt = 0
def custom_collate(x):
src = pad_sequence([item['src'][:args.max_size] for item in x], padding_value=args.pad)
src[..., -1] = args.mask
return {
# pure sequence
'u': [item['u'] for item in x],
'src': src,
'trg': pad_sequence([item['trg'] for item in x], padding_value=args.pad),
'par': pad_sequence([item['par'] for item in x], padding_value=args.pad),
# cate sequence
'cate_pos': pad_sequence([item['cate_pos'] for item in x], padding_value=args.cate_pad),
'cate_neg': pad_sequence([item['cate_neg'] for item in x], padding_value=args.cate_pad),
'cate_trg': pad_sequence([item['cate_trg'] for item in x], padding_value=args.cate_pad),
# attr sequence
'attr_pos': pad_sequence([item['attr_pos'] for item in x], padding_value=args.attr_pad),
'attr_neg': pad_sequence([item['attr_neg'] for item in x], padding_value=args.attr_pad),
'attr_trg': pad_sequence([item['attr_trg'] for item in x], padding_value=args.attr_pad),
}
print("[!] loading dataset...")
train_dataset = Dataset(path=data_path, mode="train", args=args)
train_data = DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=custom_collate, shuffle=True, num_workers=32)
valid_data = DataLoader(Dataset(path=data_path, mode="valid", args=args),
batch_size=args.val_batch_size, collate_fn=custom_collate, shuffle=True, num_workers=32)
test_data = DataLoader(Dataset(path=data_path, mode="test", args=args),
batch_size=args.val_batch_size, collate_fn=custom_collate, shuffle=True, num_workers=32)
args.item_size = train_dataset.item_size
args.item_large = args.item_size + MORE
# pure sequence
args.pad = train_dataset.pad_token
args.mask = train_dataset.mask_token
args.eos = train_dataset.eos_token
args.bos = train_dataset.bos_token
# side
args.cate_pad = train_dataset.cate_pad_token
args.attr_pad = train_dataset.attr_pad_token
print("[!] Instantiating models...")
encoder = Encoder(args)
decoder = Decoder(args)
model = Bunt(encoder, decoder, args).cuda()
if pretrained_weights is not None:
model.load_state_dict(torch.load(pretrained_weights))
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.decay)
print(model)
val_metrics, _ = evaluate(model, valid_data, train_dataset, args)
best_f1 = val_metrics['f1']
print("[Epoch 0] " + " | ".join([m + ':' +
f'{val_metrics[m]:.4f}' for m in val_metrics]))
test_metrics, instances = evaluate(model, test_data, train_dataset, args)
print("[Epoch 0] " + " | ".join([m + ':' +
f'{test_metrics[m]:.4f}' for m in test_metrics]))
for e in range(1, args.epochs+1):
train(e, model, optimizer, train_data, args)
if e % args.print_every == 0:
# Val loss
val_metrics, instances = evaluate(
model, valid_data, train_dataset, args)
val_f1 = val_metrics['f1']
print(f"[Epoch {e}] " + " | ".join([m + ':' +
f'{val_metrics[m]:.4f}' for m in val_metrics]))
print("[!] saving model...")
torch.save(model.state_dict(), os.path.join(
ckpt_dir, f'model_{e}.pt'))
# Test loss
test_metrics, _ = evaluate(model, test_data, train_dataset, args)
print(f"[Epoch {e}] " + " | ".join([m + ':' +
f'{test_metrics[m]:.4f}' for m in test_metrics]))
# Save the model if the validation loss is the best we've seen so far.
if not best_f1 or val_f1 > best_f1:
best_f1 = val_f1
with open(os.path.join(ckpt_dir, "test.log"), "w") as f:
test_metrics.update({'epoch': e})
f.write(json.dumps(test_metrics, indent=2))
terminate_cnt = 0
else:
terminate_cnt += 1
# early stop
if terminate_cnt == TER:
break
# ----------------
# Arguments
# ----------------
def parse_arguments():
p = argparse.ArgumentParser(description='Hyperparams')
# data
p.add_argument('--data', type=str, default='steam',
help='steam')
# model
p.add_argument('--n_layers', type=int, default=1,
help='layer number of model')
p.add_argument('--n_heads', type=int, default=4,
help='head number of model')
p.add_argument('--embed_size', type=int, default=32,
help='embed size for items')
# training (normal)
p.add_argument('--seed', type=int, default=42,
help='random seed for model training')
p.add_argument('--epochs', type=int, default=500,
help='number of epochs for train')
p.add_argument('--batch_size', type=int, default=64,
help='number of epochs for train')
p.add_argument('--val_batch_size', type=int, default=128,
help='number of epochs for validation / testing')
p.add_argument('--lr', type=float, default=0.0001,
help='initial learning rate')
p.add_argument('--delta_len', type=int, default=2,
help='slot size K')
p.add_argument('--dropout', type=float, default=0,
help='model dropout')
p.add_argument('--max_size', type=int, default=20,
help='maximum bundle size')
p.add_argument('--decay', type=float, default=0,
help='value of weight decay')
# side info
p.add_argument('--is_cate_pos', type=int, default=1,
help='whether add cate_pos to training')
p.add_argument('--is_cate_neg', type=int, default=0,
help='whether add attr_neg to training')
p.add_argument('--is_attr_pos', type=int, default=1,
help='whether add attr_pos to training')
p.add_argument('--is_attr_neg', type=int, default=0,
help='whether add attr_neg to training')
p.add_argument('--pos_mask_prob', type=float, default=0.5,
help='pos tags masking probability')
p.add_argument('--cate_coeff', type=float, default=0.1,
help='coefficient of masked category generation loss')
p.add_argument('--attr_coeff', type=float, default=0.1,
help='coefficient of masked attribute generation loss')
p.add_argument('--conv_coeff', type=float, default=0.1,
help='coefficient of masked conv output loss')
# logging
p.add_argument('--device', type=str, default='cuda:0',
help='cuda:x or cpu')
p.add_argument('--ckpt_dir', type=str, default='test',
help='checkpoint saving directory')
p.add_argument('--load_pretrained_weights', type=str, default=None,
help='checkpoint directory to load')
p.add_argument('--print_every', type=float, default=10,
help="print evaluate results every X epoch")
return p.parse_args()
if __name__ == "__main__":
args = parse_arguments()
args.seed = random_seed(args.seed)
# logging folder
branch, commit = last_commit_msg()
ckpt_dir = os.path.join('checkpoints', branch, commit, args.ckpt_dir, f'seed_{args.seed}_{dt.now().strftime("%Y-%m-%d-%H-%M-%S")}')
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
with open(os.path.join(ckpt_dir, "args.log"), "w") as f:
f.write(json.dumps(vars(args), indent=2))
save_dependencies(ckpt_dir)
# main
print(f"set ckpt as {ckpt_dir}")
main(f"data/{args.data}", args, args.load_pretrained_weights)
print(f"set ckpt as {ckpt_dir}")