forked from threestudio-project/threestudio
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgather.py
36 lines (30 loc) · 1.26 KB
/
gather.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from gather import Client
import shutil
client = Client("GRADIO_API_ENDPOINT")
# Define the input parameters for the API endpoint
polar_angle_vertical_rotation_in_degrees = 0
azimuth_angle_horizontal_rotation_in_degrees = 90
zoom_relative_distance_from_center = 0
input_image_of_single_object = "IMAGE_PATH"
preprocess_image_automatically_remove_background_and_recenter_object = True
diffusion_guidance_scale = 3
number_of_samples_to_generate = 3
number_of_diffusion_inference_steps = 75
# Call the predict method with the input parameters
result = client.predict(
polar_angle_vertical_rotation_in_degrees,
azimuth_angle_horizontal_rotation_in_degrees,
zoom_relative_distance_from_center,
input_image_of_single_object,
preprocess_image_automatically_remove_background_and_recenter_object,
diffusion_guidance_scale,
number_of_samples_to_generate,
number_of_diffusion_inference_steps,
api_name="/partial_1"
)
for i, item in enumerate(result[-1]):
generated_image_path = item['image']
local_image_path = f"./saved_generated_image_{i + 1}.png"
# Copy the image from the original location to the specified local path
shutil.copy(generated_image_path, local_image_path)
print(f"Generated image {i + 1} saved to {local_image_path}")