-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathaugmentations.py
181 lines (140 loc) · 7.14 KB
/
augmentations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numbers
import random
import torch
import torchvision.transforms.functional as TF
from PIL import Image
class Compose(object):
def __init__(self, transforms):
"""
Compose transforms for a sequence images
"""
self.transforms = transforms
def __call__(self, imgs, intentions, labels, flip):
for t in self.transforms:
imgs, intentions, labels, flip = t(imgs, intentions, labels, flip)
return imgs, intentions, labels
class ToPILImage(object):
def __call__(self, imgs, intentions, labels, flip):
new_imgs = [TF.to_pil_image(img, mode=None) for img in imgs]
return new_imgs, intentions, labels, flip
class Crop(object):
def __init__(self, ratio_range):
self.ratio_range = ratio_range
def __call__(self, imgs, intentions, labels, flip):
ratio = random.uniform(self.ratio_range[0], self.ratio_range[1])
w, h = imgs[0][0].size
h2, w2 = ratio * h, ratio * w
top_left_x = random.uniform(0, w - w2)
top_left_y = random.uniform(0, h - h2)
new_imgs = [TF.resized_crop(img, top_left_y, top_left_x, h2, w2, (h, w)) for img in imgs]
return new_imgs, intentions, labels, flip
class HorizontalFlip(object):
def _flip_intention(self, intention):
if intention == 'left':
return 'right'
elif intention == 'right':
return 'left'
elif intention == 'forward':
return intention
else:
raise NotImplementedError(f"unknown intention {intention}")
def _flip_angle(self, angle):
return -1 * angle
def __call__(self, imgs, intentions, labels, flip):
if flip:
imgs = [TF.hflip(img) for img in imgs]
intentions = [self._flip_intention(intention) for intention in intentions] # flip intention
labels = [[label[0], self._flip_angle(label[1])] for label in labels] # flip angle
return imgs, intentions, labels, flip
class Normalize(object):
def __init__(self, mean=[0.5071, 0.4866, 0.4409], std=[0.2675, 0.2565, 0.2761]):
self.mean = mean
self.std = std
def __call__(self, imgs, intentions, labels, flip):
new_imgs = [TF.normalize(img, self.mean, self.std) for img in imgs]
return new_imgs, intentions, labels, flip
class ColorJitter(object):
"""
Randomly change the brightness, contrast and saturation of an image.
brightness (float or tuple of python:float (min, max)) – How much to jitter brightness.
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness] or the given [min, max].
Should be non negative numbers.
contrast (float or tuple of python:float (min, max)) – How much to jitter contrast.
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast] or the given [min, max].
Should be non negative numbers.
saturation (float or tuple of python:float (min, max)) – How much to jitter saturation.
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation] or the given [min, max].
Should be non negative numbers.
hue (float or tuple of python:float (min, max)) – How much to jitter hue.
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, differ_for_each_frame=False):
super().__init__()
self.brightness = self._check_input(brightness, 'brightness')
self.contrast = self._check_input(contrast, 'contrast')
self.saturation = self._check_input(saturation, 'saturation')
self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
clip_first_on_zero=False)
self.differ_for_each_frame = differ_for_each_frame
from torchvision.transforms import ColorJitter as RandColorJitter
self.rand_jitter = RandColorJitter(brightness, contrast, saturation, hue)
def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError("If {} is a single number, it must be non negative.".format(name))
value = [center - float(value), center + float(value)]
if clip_first_on_zero:
value[0] = max(value[0], 0.0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
raise ValueError("{} values should be between {}".format(name, bound))
else:
raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))
# if value is 0 or (1., 1.) for brightness/contrast/saturation
# or (0., 0.) for hue, do nothing
if value[0] == value[1] == center:
value = None
return value
def __call__(self, imgs, intentions, labels, flip):
fn_idx = torch.randperm(4)
if not self.differ_for_each_frame:
for fn_id in fn_idx:
if fn_id == 0 and self.brightness is not None:
brightness = self.brightness
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
imgs = [TF.adjust_brightness(img, brightness_factor) for img in imgs]
if fn_id == 1 and self.contrast is not None:
contrast = self.contrast
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
imgs = [TF.adjust_contrast(img, contrast_factor) for img in imgs]
if fn_id == 2 and self.saturation is not None:
saturation = self.saturation
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
imgs = [TF.adjust_saturation(img, saturation_factor) for img in imgs]
if fn_id == 3 and self.hue is not None:
hue = self.hue
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
imgs = [TF.adjust_hue(img, hue_factor) for img in imgs]
else:
imgs = [self.rand_jitter(img) for img in imgs]
return imgs, intentions, labels, flip
class ToTensor(object):
def __init__(self):
pass
def __call__(self, imgs, intentions, labels, flip):
new_imgs = [TF.to_tensor(img) for img in imgs]
return new_imgs, intentions, labels, flip
class Resize(object):
def __init__(self, size):
self.size = size
def __call__(self, imgs, intentions, labels, flip):
new_imgs = [TF.resize(img, self.size, interpolation=Image.BICUBIC) for img in imgs]
return new_imgs, intentions, labels, flip
class Grayscale(object):
def __init__(self, p):
self.p = p
def __call__(self, imgs, intentions, labels, flip):
if random.random() < self.p:
imgs = [TF.to_grayscale(img, num_output_channels=3) for img in imgs]
return imgs, intentions, labels, flip