-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
88 lines (78 loc) · 4.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from dataset import SeqDataset, BatchSampler
from models.decision import DECISION
from models.inet import INet
from train import train_inet, train_decision
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=f'Training INet models')
parser.add_argument('--model', type=str, help='the cuda devices used for training',
choices=['inet, lstm, decision'], default='decision')
parser.add_argument('--modes', type=int, help='number of modes', default=4)
parser.add_argument('--k1', type=int, help='value of k1 for TBPTT', default=2)
parser.add_argument('--k2-n', type=int, help='the multiplicative factor of k1 to obtain k2 in TBPTT', default=5)
parser.add_argument('--input-size', type=int, help='the size of input visual percepts', default=112)
parser.add_argument('--gpu', type=str, help='the cuda devices used for training', default="0")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--num-frames', type=int, default=35)
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--frame-interval', help='sample 1 frame every x frames', type=int, default=1)
parser.add_argument('--dropout', type=int, default=0.7)
parser.add_argument('--intent-feat', help='whether or not to use intention features', type=bool, default=True)
parser.add_argument('--num-modes', type=bool, default=4)
parser.add_argument('--exp-log-path', help='path to log experiment data', type=str, default='exp/inet')
parser.add_argument('--dataset-path', help='path to dataset', type=str, default='sample_dataset')
parser.add_argument('--downsample-ratio', help='the ratio by which to downsample particular samples in the dataset',
type=int, default=0.1)
# assume there are 3 robot cameras (left, mid, right)
NUM_VIEWS = 3
# basic configuration
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
torch.manual_seed(args.seed)
# basic training setup
writer = SummaryWriter(os.path.join(args.exp_log_path, 'board'))
exp_dir = f'exp_data/inet'
os.makedirs(args.exp_log_path, exist_ok=True)
train_anno_path = os.path.join(args.dataset_path, 'train.txt')
val_anno_path = os.path.join(args.dataset_path, 'test.txt')
# data loaders
image_shape = (args.input_size, args.input_size * NUM_VIEWS)
train_set = SeqDataset(train_anno_path, args.dataset_path, image_shape, args.num_frames,
args.frame_interval, aug=True, keep_prob=args.downsample_ratio, flip=True,
num_intention=args.num_modes, elevator_only=False)
train_sampler = BatchSampler(train_set, None, args.batch_size)
train_loader = DataLoader(train_set, batch_size=args.batch_size, sampler=train_sampler, shuffle=False,
num_workers=32, pin_memory=True, drop_last=False)
test_set = SeqDataset(train_anno_path, args.dataset_path, image_shape, args.num_frames,
args.frame_interval, aug=False, keep_prob=args.downsample_ratio, flip=True,
num_intention=args.num_modes, elevator_only=False)
test_sampler = BatchSampler(train_set, None, args.batch_size)
test_loader = DataLoader(train_set, batch_size=args.batch_size, sampler=test_sampler, shuffle=False,
num_workers=8, pin_memory=True, drop_last=False)
# objective function
criterion = torch.nn.MSELoss()
# training
if args.model == 'inet':
model = INet(pretrained=True, fc_dropout_keep=args.dropout, intent_feat=False, num_modes=3,
num_frames=args.num_frames)
model = nn.DataParallel(model).cuda()
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-7 * args.batch_size * args.num_frames,
weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[70, 140], gamma=0.1)
train_inet(args.epochs, model, scheduler, optimizer, train_set, train_loader, test_set, test_loader,
criterion, writer, exp_dir)
else:
model = DECISION((args.input_size, args.input_size), channels=[128, 192, 256], sep_lstm=True, sep_fc=True,
skip_depth=[], num_modes=args.modes, controller_name=args.model)
model = nn.DataParallel(model).cuda()
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-7 * args.batch_size * args.num_frames,
weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[70, 140], gamma=0.1)
train_decision(args.epochs, model, scheduler, optimizer, train_set, train_loader, test_set, test_loader,
criterion, writer, exp_dir, args.k1, args.k2_n)