-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathseq2seq_dialog.py
267 lines (245 loc) · 11.8 KB
/
seq2seq_dialog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from __future__ import absolute_import
from __future__ import print_function
from data_utils import load_dialog_task, vectorize_data, load_candidates, \
vectorize_seq2seq_fix, tokenize, vectorize_seq2seq, vectorize_candidates
import metrics
from memn2n import SeqN2NDialog
from itertools import chain
from six.moves import range, reduce
import sys
import tensorflow as tf
import numpy as np
import os
import datetime
tf.flags.DEFINE_float("learning_rate", 0.001,
"Learning rate for Adam Optimizer.")
tf.flags.DEFINE_float("epsilon", 1e-8, "Epsilon value for Adam Optimizer.")
tf.flags.DEFINE_float("max_grad_norm", 40.0, "Clip gradients to this norm.")
tf.flags.DEFINE_integer("evaluation_interval", 10,
"Evaluate and print results every x epochs")
tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.")
tf.flags.DEFINE_integer("epochs", 200, "Number of epochs to train for.")
tf.flags.DEFINE_integer("embedding_size", 20,
"Embedding size for embedding matrices.")
tf.flags.DEFINE_integer("task_id", 6, "bAbI task id, 1 <= id <= 6")
tf.flags.DEFINE_integer("random_state", None, "Random state.")
tf.flags.DEFINE_string("data_dir", "data/dialog-bAbI-tasks/",
"Directory containing bAbI tasks")
tf.flags.DEFINE_string("model_dir", "model/",
"Directory containing memn2n model checkpoints")
tf.flags.DEFINE_boolean('train', True, 'if True, begin to train')
tf.flags.DEFINE_boolean('interactive', False, 'if True, interactive')
FLAGS = tf.flags.FLAGS
print("Started Task:", FLAGS.task_id)
class chatBot(object):
def __init__(self, data_dir, model_dir, task_id, isInteractive=True, random_state=None,
batch_size=32, learning_rate=0.001, epsilon=1e-8, max_grad_norm=40.0, evaluation_interval=1,
epochs=200, embedding_size=128, sentence_size=50):
self.data_dir = data_dir
self.task_id = task_id
# self.isTrain=isTrain
self.isInteractive = isInteractive
self.random_state = random_state
self.batch_size = batch_size
self.learning_rate = learning_rate
self.epsilon = epsilon
self.max_grad_norm = max_grad_norm
self.evaluation_interval = evaluation_interval
self.epochs = epochs
self.embedding_size = embedding_size
self.sentence_size = sentence_size
candidates, self.candid2indx = load_candidates(
self.data_dir, self.task_id)
self.n_cand = len(candidates)
print("Candidate Size", self.n_cand)
self.indx2candid = dict(
(self.candid2indx[key], key) for key in self.candid2indx)
# task data
self.trainData, self.testData, self.valData = load_dialog_task(
self.data_dir, self.task_id, self.candid2indx, False)
data = self.trainData + self.testData + self.valData
self.build_vocab(data, candidates)
self.candidates_vec=vectorize_candidates(candidates, self.word_idx, self.candidate_sentence_size)
# self.candidates_vec = vectorize_seq2seq_candidates(
# candidates, self.word_idx, self.candidate_sentence_size)
optimizer = tf.train.AdamOptimizer(
learning_rate=self.learning_rate, epsilon=self.epsilon)
self.sess = tf.Session()
self.model = SeqN2NDialog(self.batch_size, self.vocab_size, 1, self.sentence_size, self.embedding_size,
dropout_rate=0.1,
max_grad_norm=40.0,
nonlin=None,
optimizer=optimizer,
session=self.sess,
name='MemN2N',
candidate_size=self.candidate_sentence_size,
task_id=6)
self.saver = tf.train.Saver(max_to_keep=50)
self.model_dir = model_dir + "_" + self.model._name + "_" + FLAGS.model_dir
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# self.summary_writer = tf.summary.FileWriter(
# self.model.root_dir, self.model.graph_output.graph)
def build_vocab(self, data, candidates):
"""0:<PAD>, 1:<UNK>, 2:<S>, 3:</S>"""
vocab = reduce(lambda x, y: x | y, (set(
list(chain.from_iterable(s)) + q) for s, q, a in data))
vocab |= reduce(lambda x, y: x | y, (set(candidate)
for candidate in candidates))
extra = ['<PAD>', '<UNK>', '<S>', '</S>']
vocab -= set(extra)
vocab = sorted(vocab) # the built-in sorted function is guaranteed to be stable
vocab = extra + vocab
self.word_idx = dict((c, i) for i, c in enumerate(vocab))
self.idx_word = dict((i, c) for i, c in enumerate(vocab))
self.candidate_sentence_size = max(map(len, candidates)) + 1 # requested for </S> symbol
real_sentence_size = max(map(len, [s for s, q, q in data]))
self.vocab_size = len(self.word_idx) # +1 for nil word
# params
print("vocab size:", self.vocab_size)
print("Longest sentence length", real_sentence_size)
print("Set max sentence length", self.sentence_size)
print("Longest candidate sentence length",
self.candidate_sentence_size)
def interactive(self):
context = []
u = None
r = None
nid = 1
while True:
line = input('--> ').strip().lower()
if line == 'exit':
break
if line == 'restart':
context = []
nid = 1
print("clear memory")
continue
u = tokenize(line)
data = [(context, u, -1)]
s, q, a = vectorize_data(
data, self.word_idx, self.sentence_size, self.batch_size, self.n_cand, self.memory_size)
preds = self.model.predict(s, q)
r = self.indx2candid[preds[0]]
print(r)
r = tokenize(r)
u.append('$u')
u.append('#' + str(nid))
r.append('$r')
r.append('#' + str(nid))
context.append(u)
context.append(r)
nid += 1
def train(self):
trainS, trainA = vectorize_seq2seq_fix(
self.trainData, self.word_idx, self.sentence_size, self.batch_size, self.candidate_sentence_size)
valS, valA = vectorize_seq2seq_fix(
self.valData, self.word_idx, self.sentence_size, self.batch_size, self.candidate_sentence_size)
n_train = len(trainS)
n_val = len(valS)
print("Training Size", n_train)
print("Validation Size", n_val)
tf.set_random_seed(self.random_state)
batches = zip(range(0, n_train - self.batch_size, self.batch_size),
range(self.batch_size, n_train, self.batch_size))
batches = [(start, end) for start, end in batches]
self.best_validation_perresponse = 0
self.best_validation_entity_f1 = 0
self.best_validation_bleu = 0
self.sample_output(trainS[:10], trainA[:10], trainA[:10])
for t in range(1, self.epochs + 1):
np.random.shuffle(batches)
total_cost = 0.0
tic = datetime.datetime.now()
for start, end in batches:
s = trainS[start:end]
a = trainA[start:end]
cost_t = self.model.batch_fit(s, a)
total_cost += cost_t
toc = datetime.datetime.now()
print("Epoch{} finished in {}".format(t,toc - tic))
if t % self.evaluation_interval == 0:
train_preds = self.batch_predict(trainS, n_train)
val_preds = self.batch_predict(valS, n_val)
self.sample_output(valS[:30], valA[:30], val_preds[:30])
# write summary
# train_acc_summary = tf.summary.scalar(
# 'task_' + str(self.task_id) + '/' + 'train_acc', tf.constant((train_acc), dtype=tf.float32))
# val_acc_summary = tf.summary.scalar(
# 'task_' + str(self.task_id) + '/' + 'val_acc', tf.constant((val_acc), dtype=tf.float32))
# merged_summary = tf.summary.merge(
# [train_acc_summary, val_acc_summary])
# summary_str = self.sess.run(merged_summary)
# self.summary_writer.add_summary(summary_str, t)
# self.summary_writer.flush()
# if val_acc > best_validation_accuracy:
# best_validation_accuracy = val_acc
# self.saver.save(self.sess, self.model_dir +
# 'model.ckpt', global_step=t)
print('-----------------------')
print('Epoch', t)
self.eval_acc(train_preds[:100], trainA[:100], 'Training')
self.eval_acc(val_preds, valA, 'Validation')
print('Best Validation per_response_acc:{}, entity_f1_acc:{}, bleu_acc:{}'.format(
self.best_validation_perresponse, self.best_validation_entity_f1, self.best_validation_bleu
))
print('-----------------------')
def eval_acc(self, preds, trues, mode='Training'):
assert mode in {'Training', 'Validation'}
per_response_acc = metrics.per_response(preds, trues)
entityf1_acc = metrics.entity_f1(self.idx_word, preds, trues)
bleu_acc = metrics.bleu_score(preds, trues)
if mode == 'Validation':
self.best_validation_bleu = max(bleu_acc, self.best_validation_bleu)
self.best_validation_perresponse = max(per_response_acc, self.best_validation_perresponse)
self.best_validation_entity_f1 = max(entityf1_acc, self.best_validation_entity_f1)
print(mode + 'per_response_acc:{}, entityf1_acc:{}, bleu_acc:{}'.format(per_response_acc, entityf1_acc, bleu_acc))
def test(self):
ckpt = tf.train.get_checkpoint_state(self.model_dir)
if ckpt and ckpt.model_checkpoint_path:
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
else:
print("...no checkpoint found...")
if self.isInteractive:
self.interactive()
else:
testS, testA = vectorize_seq2seq_fix(
self.testData, self.word_idx, self.sentence_size, self.batch_size, self.candidate_sentence_size)
n_test = len(testS)
print("Testing Size", n_test)
test_preds = self.batch_predict(testS, n_test)
self.sample_output(testS[:30], testA[:30], test_preds[:30])
self.eval_acc(test_preds, testA, 'Testing')
def sample_output(self, H, S, A):
for h, s, a in zip(H, S, A):
h = [self.idx_word[idx] for idx in h]
s = [self.idx_word[idx] for idx in s]
a = [self.idx_word[idx] for idx in a]
print('--History--:%s\n--answer--:%s\n--Got--:%s\n\n' % (' '.join(h), ' '.join(s), ' '.join(a)))
def batch_predict(self, S, n):
preds = []
for start in range(0, n, self.batch_size):
end = start + self.batch_size
s = S[start:end]
pred = self.model.predict(s)
preds += list(pred)
ret = []
for pred in preds:
try:
index = pred.tolist().index(3)
except:
index = len(pred)
ret.append(pred[:index])
return ret
def close_session(self):
self.sess.close()
if __name__ == '__main__':
model_dir = "task" + str(FLAGS.task_id)
chatbot = chatBot(FLAGS.data_dir, model_dir, FLAGS.task_id,
isInteractive=FLAGS.interactive, batch_size=FLAGS.batch_size)
# chatbot.run()
if FLAGS.train:
chatbot.train()
else:
chatbot.test()
chatbot.close_session()