-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSourceRNG.js
169 lines (139 loc) · 4.32 KB
/
SourceRNG.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
const NTAB = 32;
const IA = 16807;
const IM = 2147483647;
const IQ = 127773;
const IR = 2836;
const NDIV = 1 + ((IM - 1) / NTAB);
const MAX_RANDOM_RANGE = 0x7FFFFFFF;
const AM = 1.0 / IM;
const EPS = 1.2e-7;
const RNMX = 1.0 - EPS;
class SourceRNG {
constructor() {
this.seed = null;
}
setSeed(seed) {
this.seed = seed;
}
// Store mIdum, mIy, and mIv in class instance
// As they're reused in the next generateRandomNumber(...) call
getParameters() {
if (this.seed === null) {
throw new Error('Seed is not defined, set by calling setSeed(...)');
}
if (
this.mIdum !== undefined
&& this.mIy !== undefined
&& this.mIv !== undefined
) {
// Return parameters set by previous call of generateRandomNumber(...)
return { mIdum: this.mIdum, mIy: this.mIy, mIv: this.mIv };
}
// Set default parameters
const parameters = {};
parameters.mIdum = this.seed;
if (this.seed >= 0) {
parameters.mIdum = -this.seed;
}
parameters.mIy = 0;
parameters.mIv = [];
return parameters;
}
setParameters({ mIdum, mIy, mIv }) {
this.mIdum = mIdum;
this.mIy = mIy;
this.mIv = mIv;
}
generateRandomNumber() {
// Both j and k are integers in Step's UniformRandom module
// Ensure that these doesn't hold float values
let j;
let k;
const parameters = this.getParameters();
let { mIdum, mIy } = parameters;
const { mIv } = parameters;
if (mIdum <= 0 || mIy === 0) {
// It's meant to check if the original value is greater than 1
if (-mIdum < 1) {
mIdum = 1;
} else {
mIdum = -mIdum;
}
for (j = (NTAB + 7); j >= 0; j -= 1) {
// Don't ask me why this works
// But before wrapping mIdum / IQ with Math.floor(...) I had
// problems with floating points. For example, the k in the loop's
// first iteration would become 0.000......12345 instead of 0
// I guess it also has to do with multiplications with k and IQ and IR
// Maybe k held too much data about the fractional part of the number
// which then caused issues when multiplying and storing a bigger integer value
k = Math.floor(mIdum / IQ);
mIdum = IA * (mIdum - (k * IQ)) - (IR * k);
if (mIdum < 0) {
mIdum += IM;
}
if (j < NTAB) {
mIv[j] = mIdum;
}
}
// Destructing for first element in mIv
const [firstElement] = mIv;
mIy = firstElement;
}
k = Math.floor(mIdum / IQ);
mIdum = (IA * (mIdum - k * IQ)) - (IR * k);
if (mIdum < 0) {
mIdum += IM;
}
j = Math.floor(mIy / NDIV);
mIy = mIv[j];
mIv[j] = mIdum;
// Update parameters for next generateRandomNumber(...) call
this.setParameters({ mIdum, mIy, mIv });
return mIy;
}
randomFloat(flLow, flHigh) {
// Math.fround(...) returns the number's 32 bit float representation
// Which makes the result align closer to Step's module
let fl = AM * Math.fround(this.generateRandomNumber());
if (fl > RNMX) {
fl = RNMX;
}
return (fl * (flHigh - flLow)) + flLow; // float in [low,high)
}
randomFloatExp(flMinVal, flMaxVal, flExponent) {
// float in [0,1)
// float32(this.generateRandomNumber())
let fl = AM * Math.fround(this.generateRandomNumber());
if (fl > RNMX) {
fl = RNMX;
}
if (flExponent !== 1.0) {
// float32(math.Pow(float64(fl), float64(flExponent)))
// float64 casts can be ignored as it's how JavaScript stores numbers as default
fl = Math.fround(Math.Pow(fl, flExponent));
}
return (fl * (flMaxVal - flMinVal)) + flMinVal; // float in [low,high)
}
randomInt(iLow, iHigh) {
const x = (iHigh - iLow) + 1;
if (x <= 1 || MAX_RANDOM_RANGE < x - 1) {
return iLow;
}
// From Source Engine 2007:
// The following maps a uniform distribution on the interval [0,MAX_RANDOM_RANGE]
// to a smaller, client-specified range of [0,x-1] in a way that doesn't bias
// the uniform distribution unfavorably. Even for a worst case x, the loop is
// guaranteed to be taken no more than half the time, so for that worst case x,
// the average number of times through the loop is 2. For cases where x is
// much smaller than MAX_RANDOM_RANGE, the average number of times through the
// loop is very close to 1.
const maxAcceptable = MAX_RANDOM_RANGE - ((MAX_RANDOM_RANGE + 1) % x);
let n;
do {
n = this.generateRandomNumber();
} while (n > maxAcceptable);
return iLow + (n % x);
}
}
module.exports = SourceRNG;