-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cc
106 lines (85 loc) · 3.55 KB
/
main.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include "raytrace.h"
#include "color.h"
#include "hittable_list.h"
#include "sphere.h"
#include "camera.h"
#include "material.h"
#include <iostream>
double hit_sphere(const point3& center, double radius, const ray& r){
// Equation of the sphere in vector form is: (𝐏−𝐂)⋅(𝐏−𝐂)=𝑟^2; P(t) = A + tb
// Eqn to check if ray hits sphere: 𝑡^2𝐛⋅𝐛+2𝑡𝐛⋅(𝐀−𝐂)+(𝐀−𝐂)⋅(𝐀−𝐂)−𝑟^2=0
// Can use quadratic eqn, check for location of intersections
vec3 oc = r.origin() - center;
auto a = r.direction().length_squared(); // v • v = |v|^2
auto half_b = dot(oc, r.direction());
auto c = oc.length_squared() - radius*radius;
auto discriminant = half_b*half_b - a*c;
if (discriminant < 0){
return -1.0;
}
else {
// Rest of quadratic eqn
return (-half_b - sqrt(discriminant)) / (a);
}
}
color ray_color_rainbow(const ray& r, const hittable& world, int depth){
hit_record rec;
if (world.hit(r, 0, infinity, rec)) {
return 0.5 * (rec.normal + color(1,1,1));
}
vec3 unit_direction = unit_vector(r.direction());
auto t = 0.5*(unit_direction.y() + 1.0);
return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.95, 0.68, 0.84);
}
color ray_color(const ray& r, const hittable& world, int depth) {
hit_record rec;
// If we've exceeded the ray bounce limit, no more light is gathered.
if (depth <= 0)
return color(0,0,0);
if (world.hit(r, 0.001, infinity, rec)) {
ray scattered;
color attenuation;
if (rec.mat_ptr->scatter(r, rec, attenuation, scattered))
return attenuation * ray_color(scattered, world, depth-1);
return color(0,0,0);
}
vec3 unit_direction = unit_vector(r.direction());
auto t = 0.5*(unit_direction.y() + 1.0);
// Linear interpolation: blendedValue=(1−𝑡)⋅startValue+𝑡⋅endValue,
return (1.0-t)*color(1.0, 1.0, 1.0) + t*color(0.95, 0.68, 0.84);
}
int main() {
// Image
const auto aspect_ratio = 16.0 / 9.0;
const int image_width = 400;
const int image_height = static_cast<int>(image_width / aspect_ratio);
const int samples_per_pixel = 100;
const int max_depth = 50;
// World
hittable_list world;
auto material_ground = make_shared<lambertian>(color(0.8, 0.8, 0.0));
auto material_center = make_shared<lambertian>(color(0.7, 0.3, 0.3));
auto material_right = make_shared<lambertian>(color(0.75, 0.68, 0.74));
world.add(make_shared<sphere>(point3(0,0,-1), 0.5, material_center));
world.add(make_shared<sphere>(point3(-1,-0.2,-1.5), 0.5, material_right));
world.add(make_shared<sphere>(point3(0,-100.5,-1), 100, material_ground)); // spherical ground
// Camera
camera cam;
// Render
std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";
for (int j = image_height-1; j >= 0; j--) {
std::cerr << "\rScanlines remaining: " << j << ' ' << std::flush;
for (int i = 0; i < image_width; i++) {
color pixel_color(0, 0, 0);
// Randomly sample color of surrounding pixels for antialiasing
for (int s = 0; s < samples_per_pixel; s++){
auto u = double(i + random_double()) / (image_width-1);
auto v = double(j + random_double()) / (image_height-1);
ray r = cam.get_ray(u, v);
pixel_color += ray_color(r, world, max_depth);
}
write_color(std::cout, pixel_color, samples_per_pixel);
}
}
std::cerr << "\nDone.\n";
}