-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathStableDiffusion_exps.py
104 lines (90 loc) · 3.43 KB
/
StableDiffusion_exps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""Experimenting with StableDiffusion and our version. """
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
import matplotlib.pyplot as plt
def plt_show_image(image):
plt.figure(figsize=(8, 8))
plt.imshow(image)
plt.axis("off")
plt.tight_layout()
plt.show()
def recursive_print(module, prefix="", depth=0, deepest=3):
"""Simulating print(module) for torch.nn.Modules
but with depth control. Print to the `deepest` level. `deepest=0` means no print
"""
if depth >= deepest:
return
for name, child in module.named_children():
if len([*child.named_children()]) == 0:
print(f"{prefix}({name}): {child}")
else:
print(f"{prefix}({name}): {type(child).__name__}")
recursive_print(child, prefix + " ", depth + 1, deepest)
#%%
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
use_auth_token=True
).to("cuda")
def dummy_checker(images, **kwargs): return images, False
pipe.safety_checker = dummy_checker
#%%
recursive_print(pipe.unet, deepest=2)
#%% Text to
# prompt = "a photo of an ballerina riding a horse on mars"
prompt = "A ballerina riding a Harley Motorcycle, CG Art"
with autocast("cuda"):
image = pipe(prompt)["sample"][0]
image.save("astronaut_rides_horse.png")
plt_show_image(image)
#%% Loading in our own model!
from StableDiff_UNet_model import UNet_SD, load_pipe_into_our_UNet
myunet = UNet_SD()
original_unet = pipe.unet.cpu()
load_pipe_into_our_UNet(myunet, original_unet)
pipe.unet = myunet.cuda()
#%%
torch.save(myunet.state_dict(), "/home/binxuwang/DL_Projects/SDfromScratch/ourUNet.pth")
#%% Saving images during diffusion process using callback
latents_reservoir = []
@torch.no_grad()
def plot_show_callback(i, t, latents):
latents_reservoir.append(latents.detach().cpu())
latents = 1 / 0.18215 * latents
image = pipe.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
plt_show_image(image[0])
plt.imsave(f"/home/binxuwang/DL_Projects/SDfromScratch/diffproc/sample_{i:02d}.png", image[0])
latents_reservoir = []
@torch.no_grad()
def save_latents(i, t, latents):
latents_reservoir.append(latents.detach().cpu())
#%%
# prompt = "A ballerina dancing on a high ground in the starry night"
# prompt = "A cute cat running on the grass in the style of Monet"
prompt = "A ballerina chasing her cat running on the grass in the style of Monet"
prompt = "A kitty cat dressed like Lincoln, old timey style"
with autocast("cuda"):
image = pipe(prompt, callback=plot_show_callback)["sample"][0] # plot_show_callback
image.save("cat_Lincoln.png")
plt_show_image(image)
#%%
len(latents_reservoir)
plt_show_image(latents_reservoir[-1][0, [0, 1, 2,], :].permute(1, 2, 0).cpu().numpy() / 1.6 + 0.4)
#%% Visualize architecture
#%% Full unets
recursive_print(pipe.unet, deepest=3)
#%%
recursive_print(pipe.vae, deepest=3)
#%% Down blocks
recursive_print(pipe.unet.down_blocks, deepest=4)
#%% Up blocks
recursive_print(pipe.unet.up_blocks, deepest=4)
#%%
torch.save(pipe.unet.state_dict(), "/home/binxuwang/DL_Projects/SDfromScratch/SD_unet.pt",)
torch.save(pipe.vae.state_dict(), "/home/binxuwang/DL_Projects/SDfromScratch/SD_vae.pt",)
#%%
SD_unet = torch.load("/home/binxuwang/DL_Projects/SDfromScratch/SD_unet.pt")
#%%
# https://github.com/CompVis/stable-diffusion/blob/main/configs/stable-diffusion/v1-inference.yaml