-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
60 lines (47 loc) · 1.58 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""
isort:skip_file
"""
import itertools
import matplotlib
matplotlib.use('Agg')
import numpy as np
from matplotlib import pyplot as plt
def imshow(img):
plt.imshow(img, cmap='gray')
def plot_confusion_matrix(cm, classes, normalize=False,
title='Confusion matrix', cmap=plt.cm.Blues,
filesave=None):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
np.set_printoptions(precision=2)
plt.figure(figsize=(7, 7))
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print('Normalized confusion matrix')
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes)
yticks = []
for i in (range(cm.shape[0])):
acc = cm[i, i] / np.sum(cm[i])
yticks.append('{} (acc={:.10f})'.format(i, acc))
plt.yticks(tick_marks, yticks)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment='center',
color='white' if cm[i, j] > thresh else 'black')
plt.ylabel('True label')
plt.xlabel('Predicted label')
if filesave is None:
plt.tight_layout()
plt.show()
else:
plt.savefig(filesave, bbox_inches='tight')