-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathctl.v
607 lines (537 loc) · 21.7 KB
/
ctl.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/*
* ctl.v
*
* generate all control signals for other modules
*
* (C) Arlet Ottens <[email protected]>
*/
module ctl(
input clk,
inout [7:0] DB,
input RST,
input IRQ,
input RDY,
input NMI,
output reg WE,
output reg [2:0] alu_sel,
output reg [2:0] alu_op,
output reg [2:0] alu_ld,
output reg alu_ci,
input alu_co,
input alu_n,
input alu_v,
input alu_z,
output tsx,
output reg [4:0] ab_op );
`include "states.i"
// synthesis attribute KEEP of cond_true is TRUE
// synthesis attribute KEEP of take_irq is TRUE
// synthesis attribute KEEP of write_p is TRUE
// synthesis attribute KEEP of load_p is TRUE
// synthesis attribute KEEP of do_bit is TRUE
// synthesis attribute KEEP of load_ir is TRUE
// synthesis attribute KEEP of load_c_alu is TRUE
// synthesis attribute KEEP of load_v_alu is TRUE
// synthesis attribute KEEP of load_n_alu is TRUE
// synthesis attribute KEEP of clv is TRUE
// synthesis attribute KEEP of cli_sei is TRUE
// synthesis attribute KEEP of clc_sec is FALSE
// synthesis attribute KEEP of cld_sed is FALSE
// synthesis attribute KEEP of pull is TRUE
reg [3:0] state = FETCH;
reg [7:0] IR;
reg Z, N, C, V, I = 1, D;
reg cond_true;
reg rst; // clean reset signal
reg irq;
always @(posedge clk)
if( RDY )
if( ~IRQ ) irq <= 1;
else if( state == STK2 ) irq <= 0;
wire take_irq = (irq & ~I);
initial WE = 1;
wire [7:0] P = { N, V, 2'b11, D, I, Z, C };
assign tsx = (state == DECODE && IR == 8'hba);
reg jmp;
reg ind;
reg rmw;
reg load_ir;
reg load_c_alu;
reg load_n_alu;
reg load_z_alu;
reg load_v_alu;
wire indx = (IR[3:0] == 4'b0001);
wire brk = (IR == 8'h00);
wire clv = (IR == 8'hb8);
wire pha = (IR == 8'h48);
wire php = (IR == 8'h08);
wire plp = (IR == 8'h28);
wire rti = (IR == 8'h40);
wire cli = (IR == 8'h58);
wire sei = (IR == 8'h78);
wire clc = (IR == 8'h18);
wire sec = (IR == 8'h38);
wire cld = (IR == 8'hd8);
wire sed = (IR == 8'hf8);
wire cli_sei = cli | sei;
wire clc_sec = clc | sec;
wire cld_sed = cld | sed;
wire load_p = (state == STK0 && plp) || (state == STK0 && rti);
wire write_p = (state == STK0 && php) || (state == STK2 && brk);
wire do_bit = state == DATA && (IR == 8'h24 || IR == 8'h2c);
wire pull = IR[3] ? IR[5]: IR[6];
assign DB = write_p ? P: 8'hzz;
/*
* rmw is set when doing a read-modify-write instruction. In those
* instructions, we stay in DATA state for extra cycle to write back
* the result.
*/
always @(posedge clk)
if( RDY )
if( state == DECODE )
casez( IR )
8'b0???_?110: rmw <= 1; // shift memory
8'b11??_?110: rmw <= 1; // INC/DEC
default: rmw <= 0;
endcase
else if( state == DATA ) rmw <= 0;
/*
* ind is used for indirect access. These are initially treated as ABS
* addressing, but then the result is treated as 2nd ABS address.
*/
always @(posedge clk)
if( RDY )
if( state == DECODE )
casez( IR )
8'b??0?_0000: ind <= 1; // BRK
8'b011?_??00: ind <= 1; // JMP (a) and JMP (a,x)
default: ind <= 0;
endcase
else if( state == IND0 ) ind <= 0; // prevent multiple indirections
/*
* set 'jmp' for anything that needs to write PC in ABS0 state
*/
always @* begin
jmp = 0;
casez( IR )
8'b????_0000: jmp = 1; // JSR a/BRK
8'b01??_??00: jmp = 1; // JMP a
endcase
end
/*
* ALU input selection. Selects both AI/BI inputs of the ALU, as well as the
* value to send to SB for address calculations. Note that in the BRA0 state, we
* send DB value over SB, even though ABL module has access to DB. This reduces the
* muxing we need to do.
*/
always @* begin
alu_sel = SEL_0;
case( state )
BRA0: alu_sel = SEL_MEM; // BRA (M -> S)
IND0:
casez( IR )
8'b???1_????: alu_sel = SEL_CPX; // JMP (IND,X)
endcase
STK0:
casez( IR )
8'b????_??0?: alu_sel = SEL_CMP; // PHA
8'b0???_??1?: alu_sel = SEL_CPY; // PHY
8'b1???_??1?: alu_sel = SEL_CPX; //
endcase
ABS0:
casez( IR )
8'b10?1_??10: alu_sel = SEL_CPY; // A,Y (Y -> S)
8'b???1_?0??: alu_sel = SEL_CPY; // (Y) (Y -> S)
8'b0111_1100: if( ind ) alu_sel = SEL_CPX; // A,X (X -> S)
else alu_sel = SEL_0; // A (0 -> S)
8'b???1_?1??: alu_sel = SEL_CPX; // A,X (X -> S)
endcase
DECODE:
casez( IR )
8'b1?0?_1000: alu_sel = SEL_INY; // DEY/INY/TYA
8'b111?_1000: alu_sel = SEL_INX; // INX
8'b00?1_1010: alu_sel = SEL_0; // INC/DEC A
8'b1?0?_1010: alu_sel = SEL_INX; // TXA/TXS/DEX
8'b1010_10?0: alu_sel = SEL_CMP; // TAX/TAY
8'b0???_1010: alu_sel = SEL_CMP; // shift A
8'b10?1_??10: alu_sel = SEL_CPY; // ZPY (Y -> S)
8'b???1_?1??: alu_sel = SEL_CPX; // ZPX (X -> S)
8'b???0_?0??: alu_sel = SEL_CPX; // (X) (X -> S)
endcase
INDX0:
casez( IR )
8'b???0_????: alu_sel = SEL_CPX; // (X) (X -> S)
endcase
DATA, FETCH:
casez( IR )
8'b11??_??01: alu_sel = SEL_CMP; // CMP/SBC (~M)
8'b1?0?_??00: alu_sel = SEL_CPY; // STY/CPY
8'b111?_??00: alu_sel = SEL_CPX; // CPX
8'b101?_????: alu_sel = SEL_MEM; // LDA/LDX/LDY
8'b100?_??10: alu_sel = SEL_CPX; // STX
8'b0010_?100: alu_sel = SEL_ADD; // BIT
8'b????_??01: alu_sel = SEL_ADD; // ORA/AND/...
default: alu_sel = SEL_MEM;
endcase
endcase
end
/*
* select ALU operation
*/
always @*
casez( IR )
8'b?1?1_1010: alu_op = OP_AI; // PHX/PHY/PLX/PLY
8'b1000_1000: alu_op = OP_ADC; // DEY
8'b001?_??00: alu_op = OP_AND; // BIT
8'b?11?_??01: if( D ) alu_op = OP_BCD; // ADC with BCD correction
else alu_op = OP_ADC; // ADC without correction
8'b11??_????: alu_op = OP_ADC; // SBC/CMP/INX/DEX/INY
8'b000?_??01: alu_op = OP_ORA; // ORA
8'b001?_??01: alu_op = OP_AND; // AND
8'b010?_??01: alu_op = OP_EOR; // EOR
8'b00?1_1010: alu_op = OP_ADC; // INC/DEC A
8'b01??_??10: alu_op = OP_ROR; // ROR
8'b00??_??10: alu_op = OP_ROL; // ROL
default: alu_op = OP_AI; // nothing
endcase
/*
* select ALU load operation. We can load result in X, A, Y, or store it
* to memory
*/
always @* begin
alu_ld = 0;
case( state )
STK0:
casez( IR )
8'b?10?_1???: alu_ld = LD_M; // PHA
endcase
DATA:
if( !WE ) alu_ld = LD_M; // write ALU
DECODE:
casez( IR )
8'b1000_1010: alu_ld = LD_A; // TXA
8'b1001_1000: alu_ld = LD_A; // TYA
8'b0???_1010: alu_ld = LD_A; // shift A/INC/DEC A
8'b101?_1010: alu_ld = LD_X; // TAX/TSX
8'b110?_1010: alu_ld = LD_X; // DEX
8'b1110_1000: alu_ld = LD_X; // INX
8'b1??0_1000: alu_ld = LD_Y; // INY/DEY/TAY
endcase
FETCH:
casez( IR )
8'b0???_??01: alu_ld = LD_A; // ORA/AND/EOR/ADC
8'b101?_??01: alu_ld = LD_A; // LDA
8'b111?_??01: alu_ld = LD_A; // SBC
8'b0111_1010: alu_ld = LD_Y; // PLY
8'b1111_1010: alu_ld = LD_X; // PLX
8'b?11?_10??: alu_ld = LD_A; // PLA
8'b101?_??10: alu_ld = LD_X; // LDX
8'b1010_??00: alu_ld = LD_Y; // LDY
8'b1011_?100: alu_ld = LD_Y; // LDY
endcase
endcase
end
/*
* ALU CI (carry input) selection
*/
always @* begin
casez( IR )
8'b0?1?_?110: alu_ci = C; // ROL/ROR MEM
8'b110?_?110: alu_ci = 0; // DEC (M + FF + 0 -> M)
8'b111?_?110: alu_ci = 1; // INC (M + 00 + 1 -> M)
8'b1100_1010: alu_ci = 0; // DEX (X + FF + 0 -> X)
8'b1000_1000: alu_ci = 0; // DEY (Y + FF + 0 -> Y)
8'b1110_1000: alu_ci = 1; // INX (X + 00 + 1 -> X)
8'b1100_1000: alu_ci = 1; // INY (Y + 00 + 1 -> Y)
8'b0001_1010: alu_ci = 1; // INC A
8'b0011_1010: alu_ci = 0; // DEC A
8'b0?10_1010: alu_ci = C; // ROL/ROR A
8'b?11?_??01: alu_ci = C; // ADC/SBC
8'b110?_??01: alu_ci = 1; // CMP
8'b11??_??00: alu_ci = 1; // CPX/CPY
default: alu_ci = 0; // default is no carry
endcase
end
/*
* control signal to determine if we need to update Z flag with
* ALU result in this cycle. It is the same as for the N flag, except
* for the BIT instruction, where the N flag comes from DB[7] instead.
*/
always @* begin
load_z_alu = load_n_alu;
if( state == FETCH )
casez( IR )
8'b0010_?100: load_z_alu = 1; // bit
endcase
end
/*
* control signal to determine if we need to update N flag with
* ALU result in this cycle.
*/
always @* begin
load_n_alu = 0;
case( state )
FETCH:
casez( IR )
8'b0110_1000: load_n_alu = 1; // pla
8'b0???_??01: load_n_alu = 1; // ora/and/eor/adc
8'b101?_??01: load_n_alu = 1; // lda
8'b11??_??01: load_n_alu = 1; // cmp/sbc
8'b1010_00?0: load_n_alu = 1; // ldx/ldy imm
8'b101?_?1?0: load_n_alu = 1; // ldx/ldy abs/zp
8'b11?0_0000: load_n_alu = 1; // cpx/cpy imm
8'b11??_?100: load_n_alu = 1; // cpx/cpy
endcase
DECODE:
casez( IR )
8'b0???_1010: load_n_alu = 1; // rol A
8'b1?00_10?0: load_n_alu = 1; // dey/txa/iny/dex
8'b1010_10?0: load_n_alu = 1; // tax/tay
8'b1001_1000: load_n_alu = 1;
8'b1011_1010: load_n_alu = 1;
8'b1110_1000: load_n_alu = 1;
endcase
DATA:
casez( IR )
8'b0???_?110: load_n_alu = !WE;
8'b11??_?110: load_n_alu = !WE;
endcase
endcase
end
/*
* control signal to determine if we need to update N flag with
* ALU result in this cycle. Only true for ADC/SBC.
*/
always @* begin
load_v_alu = 0;
case( state )
FETCH:
casez( IR )
8'b?11?_??01: load_v_alu = 1; // ADC/SBC
endcase
endcase
end
/*
* control signal to determine if we need to update C flag with
* ALU result in this cycle.
*/
always @* begin
load_c_alu = 0;
case( state )
DECODE:
casez( IR )
8'b0??0_1010: load_c_alu = 1; // shift A
endcase
DATA:
if( !WE )
casez( IR )
8'b0???_?110: load_c_alu = 1; // shift mem
endcase
FETCH:
casez( IR )
8'b011?_??01: load_c_alu = 1; // ADC
8'b11??_??01: load_c_alu = 1; // CMP/SBC
8'b11?0_??00: load_c_alu = 1; // CPX/CPY
endcase
endcase
end
/*
* Update the flags
*/
always @(posedge clk)
if( RDY )
if( load_p ) Z <= DB[1];
else if( load_z_alu ) Z <= alu_z;
always @(posedge clk)
if( RDY )
//if( brk && state == STK2 ) D <= 0; // optional: clear D in interrupt
if( load_p ) D <= DB[3];
else if( cld_sed ) D <= IR[5];
always @(posedge clk)
if( RDY )
if( brk && state == STK2 ) I <= 1;
else if( load_p ) I <= DB[2];
else if( cli_sei ) I <= IR[5];
always @(posedge clk)
if( RDY )
if( load_p | do_bit ) N <= DB[7];
else if( load_n_alu ) N <= alu_n;
always @(posedge clk)
if( RDY )
if( load_p | do_bit ) V <= DB[6];
else if( clv ) V <= 0;
else if( load_v_alu ) V <= alu_v;
always @(posedge clk)
if( RDY )
if( load_p ) C <= DB[0];
else if( load_c_alu ) C <= alu_co;
else if( clc_sec ) C <= IR[5];
/*
* remember we saw a RST signal so we don't get
* confused by glitches, but always complete a full
* sequence
*/
always @(posedge clk)
if( RDY )
if( !RST ) rst <= 1;
else if( state == STK2 ) rst <= 0;
/*
* control signal to indicate if we need to load IR (instruction register)
* in this cycle
*/
always @* begin
load_ir = 0;
case( state )
FETCH: load_ir = 1;
DECODE:
if( rst )
load_ir = 1;
else casez( IR )
8'b?1?1_1010: load_ir = 0; // PHX/PHY/PLX/PLY
8'b0??0_1000: load_ir = 0;
8'b????_10?0: load_ir = 1;
endcase
endcase
end
/*
* update IR (instruction register)
*/
always @(posedge clk)
if( RDY & load_ir )
if( rst | take_irq ) IR <= 0;
else if( load_ir ) IR <= DB;
/*
* !WE signal
*/
always @(posedge clk)
if( RDY ) case( state )
DATA: WE <= !rmw;
ABS0:
casez( IR )
8'b100?_????: WE <= 0; // all STA/STX/STY
default: WE <= 1;
endcase
DECODE:
casez( IR )
8'b00?0_0000: WE <= 0; // JSR, BRK
8'b0?00_1000: WE <= 0; // PHA/PHP
8'b?101_1010: WE <= 0; // PHX/PHY
8'b100?_01??: WE <= 0; // STA/STX/STY ZP[,X]
default: WE <= 1;
endcase
STK0: WE <= !(!IR[6] && !IR[3]);
STK1: WE <= !(!IR[6] && !IR[5]);
default: WE <= 1;
endcase
/*
* Address Bus operation
*/
always @* begin
ab_op = 0;
case( state )
DECODE:
casez( IR )
8'b????_01??: ab_op = AB_ZPXY; // only use SB here
8'b????_0001: ab_op = AB_ZPXY;
8'b0100_0000: ab_op = AB_PLA; // RTI
8'b0110_0000: ab_op = AB_PLA; // RTS
8'b0010_1000: ab_op = AB_PLA; // PLP
8'b0110_1000: ab_op = AB_PLA; // PLA
8'b?111_1010: ab_op = AB_PLA; // PLX/PLY
8'b0000_0000: ab_op = take_irq ? AB_PHA : AB_BRK; // IRQ
8'b0010_0000: ab_op = AB_BRK; // JSR
8'b0000_1000: ab_op = AB_PHA; // PHP
8'b0100_1000: ab_op = AB_PHA; // PHA
8'b?101_1010: ab_op = AB_PHA; // PHX/PHY
8'b1001_1010: ab_op = AB_TXS;
default: ab_op = take_irq & load_ir ? AB_IRQ0 : AB_FETCH;
endcase
STK0:
casez( IR )
8'b?1??_0???: ab_op = AB_RTS0; // RTS/RTI
8'b?0??_0???: ab_op = AB_JSR0; // JSR/BRK
8'b????_1???: ab_op = AB_DATA; // PHA/PHA/PLA/PLP
endcase
STK1:
casez( IR )
8'h00: ab_op = AB_BRK1;
8'h20: ab_op = AB_JSR1;
8'h40: ab_op = AB_RTS0;
8'h60: ab_op = AB_RTS1;
endcase
// fixme NMI vectors
STK2:
if( pull ) ab_op = AB_JMP0;
else if( rst ) ab_op = AB_RST;
else ab_op = AB_BRK2;
FETCH: if( take_irq ) ab_op = AB_IRQ0;
else ab_op = AB_FETCH;
INDX0: ab_op = AB_INDX0;
ABS0:
if( jmp ) ab_op = AB_JMP0;
else if( indx ) ab_op = AB_INDX1;
else ab_op = AB_ABS0;
DATA:
if( rmw ) ab_op = AB_RMW;
else ab_op = AB_DATA;
BRA0: ab_op = AB_BRA0;
IND0: ab_op = AB_IND0;
endcase
end
/*
* instruction decoding/state machine
*/
always @(posedge clk)
if( RDY )
if( !RST ) state <= FETCH;
else case( state )
DECODE:
casez( IR )
8'b?1?1_1010: state <= STK0; // PHY/PHX/PLY/PLX
8'b0??0_?000: state <= STK0; // BRK,JSR,RTI,RTS,PLA,PHA,PLP,PHP
8'b1000_0000: state <= BRA0; // BRA
8'b???1_0000: state <= cond_true ? BRA0: FETCH; // odd column 0
8'b????_0001: state <= INDX0; // column 1 = (ZP,X) or (ZP),Y
8'b1??0_00?0: state <= FETCH; // LDY#,CPY#,CPX#,LDX#
8'b????_01??: state <= DATA; // column 4567 (ZP [+index])
8'b???0_1001: state <= FETCH; // even column 9 (IMM)
8'b???1_1001: state <= ABS0; // odd column 9
8'b????_11??: state <= ABS0; // columns CDEF
endcase
STK0:
if( ~IR[3] ) state <= STK1;
else state <= FETCH;
STK1:
if( ~IR[5] ) state <= STK2;
else if( pull ) state <= FETCH;
else state <= ABS0;
STK2:
if( pull ) state <= FETCH;
else state <= IND0; // jump through vector
DATA:
if( !rmw ) state <= FETCH;
BRA0: state <= FETCH;
FETCH: state <= DECODE;
INDX0: state <= ABS0;
IND0: state <= ABS0;
ABS0:
if( ind ) state <= IND0;
else if( jmp ) state <= FETCH;
else state <= DATA;
endcase
/*
* condition codes
*/
always @*
casez( IR[7:4] )
4'b000?: cond_true = ~N; // BPL
4'b001?: cond_true = N; // BMI
4'b010?: cond_true = ~V; // BVC
4'b011?: cond_true = V; // BVS
4'b1000: cond_true = 1; // BRA
4'b1001: cond_true = ~C; // BCC
4'b101?: cond_true = C; // BCS
4'b110?: cond_true = ~Z; // BNE
4'b111?: cond_true = Z; // BEQ
endcase
endmodule