-
Notifications
You must be signed in to change notification settings - Fork 0
/
maml.py
266 lines (224 loc) · 14.6 KB
/
maml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
""" Code for the MAML algorithm and network definitions. """
from __future__ import print_function
import numpy as np
import sys
import tensorflow as tf
try:
import special_grads
except KeyError as e:
print('WARN: Cannot define MaxPoolGrad, likely already defined for this version of tensorflow: %s' % e,
file=sys.stderr)
from tensorflow.python.platform import flags
from utils import mse, xent, conv_block, normalize
FLAGS = flags.FLAGS
class MAML:
def __init__(self, dim_input=1, dim_output=1, test_num_updates=5):
""" must call construct_model() after initializing MAML! """
self.dim_input = dim_input
self.dim_output = dim_output
self.update_lr = FLAGS.update_lr
self.meta_lr = tf.placeholder_with_default(FLAGS.meta_lr, ())
self.classification = False
self.test_num_updates = test_num_updates
if FLAGS.datasource == 'sinusoid':
self.dim_hidden = [40, 40]
self.loss_func = mse
self.forward = self.forward_fc
self.construct_weights = self.construct_fc_weights
elif FLAGS.datasource == 'omniglot' or FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'cifarfs':
self.loss_func = xent
self.classification = True
if FLAGS.conv:
self.dim_hidden = FLAGS.num_filters
self.forward = self.forward_conv
self.construct_weights = self.construct_conv_weights
else:
self.dim_hidden = [256, 128, 64, 64]
self.forward=self.forward_fc
self.construct_weights = self.construct_fc_weights
# Determine amount of channels to use
if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'cifarfs':
self.channels = 3
else:
self.channels = 1
# Compute image width (=height)
self.img_size = int(np.sqrt(self.dim_input/self.channels)) # dim input is length of totally flattened image
else:
raise ValueError('Unrecognized data source.')
def construct_model(self, input_tensors=None, prefix='metatrain_'):
# This function constructs the model, and defines the ops. The ops are not called yet! That happens in session.run(...)
# a: training data for inner gradient, b: test data for meta gradient
if input_tensors is None:
self.inputa = tf.placeholder(tf.float32)
self.inputb = tf.placeholder(tf.float32)
self.labela = tf.placeholder(tf.float32)
self.labelb = tf.placeholder(tf.float32)
else: # Directly couple input tensors from tf queue to object variables
self.inputa = input_tensors['inputa']
self.inputb = input_tensors['inputb']
self.labela = input_tensors['labela']
self.labelb = input_tensors['labelb']
with tf.variable_scope('model', reuse=None) as training_scope:
if 'weights' in dir(self):
# weights were already initialized during some training, reuse those
training_scope.reuse_variables()
weights = self.weights
else:
# Define the weights
# this is done when construct_model is called
self.weights = weights = self.construct_weights()
# outputbs[i] and lossesb[i] is the output and loss after i+1 gradient updates
lossesa, outputas, lossesb, outputbs = [], [], [], []
accuraciesa, accuraciesb = [], []
num_updates = max(self.test_num_updates, FLAGS.num_updates)
outputbs = [[]]*num_updates
lossesb = [[]]*num_updates
accuraciesb = [[]]*num_updates
def task_metalearn(inp, reuse=True):
""" Perform gradient descent for one task in the meta-batch. """
inputa, inputb, labela, labelb = inp
task_outputbs, task_lossesb = [], []
if self.classification:
task_accuraciesb = []
task_outputa = self.forward(inputa, weights, reuse=reuse) # only reuse on the first iter
task_lossa = self.loss_func(task_outputa, labela)
# MAML line 5: evaluate grads on train set (a)
grads = tf.gradients(task_lossa, list(weights.values()))
if FLAGS.stop_grad:
grads = [tf.stop_gradient(grad) for grad in grads]
gradients = dict(zip(weights.keys(), grads))
# MAML line 6: compute updates (adapted parameters)
fast_weights = dict(zip(weights.keys(), [weights[key] - self.update_lr*gradients[key] for key in weights.keys()]))
# MAML line 8: calculate output/loss on test set (b)
output = self.forward(inputb, fast_weights, reuse=True)
task_outputbs.append(output)
task_lossesb.append(self.loss_func(output, labelb))
for j in range(num_updates - 1):
loss = self.loss_func(self.forward(inputa, fast_weights, reuse=True), labela)
# MAML line 5: evaluate grads on train set (a)
grads = tf.gradients(loss, list(fast_weights.values()))
if FLAGS.stop_grad:
grads = [tf.stop_gradient(grad) for grad in grads]
gradients = dict(zip(fast_weights.keys(), grads))
# MAML line 6: compute updates (adapted parameters)
fast_weights = dict(zip(fast_weights.keys(), [fast_weights[key] - self.update_lr*gradients[key] for key in fast_weights.keys()]))
# MAML line 8: calculate output/loss on test set (b)
output = self.forward(inputb, fast_weights, reuse=True)
task_outputbs.append(output)
task_lossesb.append(self.loss_func(output, labelb))
task_output = [task_outputa, task_outputbs, task_lossa, task_lossesb]
if self.classification:
task_accuracya = tf.contrib.metrics.accuracy(tf.argmax(tf.nn.softmax(task_outputa), 1), tf.argmax(labela, 1))
for j in range(num_updates):
task_accuraciesb.append(tf.contrib.metrics.accuracy(tf.argmax(tf.nn.softmax(task_outputbs[j]), 1), tf.argmax(labelb, 1)))
task_output.extend([task_accuracya, task_accuraciesb])
return task_output
if FLAGS.norm is not 'None': # to initialize batch norm variables
# to initialize the batch norm vars, might want to combine this, and not run idx 0 twice.
unused = task_metalearn((self.inputa[0], self.inputb[0], self.labela[0], self.labelb[0]), False)
out_dtype = [tf.float32, [tf.float32]*num_updates, tf.float32, [tf.float32]*num_updates]
if self.classification: # accuracies are also stored
out_dtype.extend([tf.float32, [tf.float32]*num_updates])
# THE REAL LEARNING CONSTRUCTION OCCURS HERE
# IMPORTANT: executes in parallel for ALL TASKS in batch I guess? The inputs are formatted in a special way to contain multiple tasks?
result = tf.map_fn(task_metalearn, elems=(self.inputa, self.inputb, self.labela, self.labelb), dtype=out_dtype, parallel_iterations=FLAGS.meta_batch_size)
if self.classification:
outputas, outputbs, lossesa, lossesb, accuraciesa, accuraciesb = result
else:
outputas, outputbs, lossesa, lossesb = result
## Performance & Optimization
if 'train' in prefix:
self.total_loss1 = total_loss1 = tf.reduce_sum(lossesa) / tf.to_float(FLAGS.meta_batch_size)
self.total_losses2 = total_losses2 = [tf.reduce_sum(lossesb[j]) / tf.to_float(FLAGS.meta_batch_size) for j in range(num_updates)]
# after the map_fn
self.outputas, self.outputbs = outputas, outputbs
if self.classification:
self.total_accuracy1 = total_accuracy1 = tf.reduce_sum(accuraciesa) / tf.to_float(FLAGS.meta_batch_size)
self.total_accuracies2 = total_accuracies2 = [tf.reduce_sum(accuraciesb[j]) / tf.to_float(FLAGS.meta_batch_size) for j in range(num_updates)]
self.pretrain_op = tf.train.AdamOptimizer(self.meta_lr).minimize(total_loss1)
if FLAGS.metatrain_iterations > 0: # FLAGS.metatrain_iterations = how many times to execute
# This is the meta optimizer
optimizer = tf.train.AdamOptimizer(self.meta_lr)
# Compute gradients after num_updates
self.gvs = gvs = optimizer.compute_gradients(self.total_losses2[FLAGS.num_updates-1])
# Gradients are clipped by [-10,10] to avoid explosion?
if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'cifarfs':
gvs = [(tf.clip_by_value(grad, -10, 10), var) for grad, var in gvs]
# update parameters
self.metatrain_op = optimizer.apply_gradients(gvs)
else:
self.metaval_total_loss1 = total_loss1 = tf.reduce_sum(lossesa) / tf.to_float(FLAGS.meta_batch_size)
self.metaval_total_losses2 = total_losses2 = [tf.reduce_sum(lossesb[j]) / tf.to_float(FLAGS.meta_batch_size) for j in range(num_updates)]
if self.classification:
self.metaval_total_accuracy1 = total_accuracy1 = tf.reduce_sum(accuraciesa) / tf.to_float(FLAGS.meta_batch_size)
self.metaval_total_accuracies2 = total_accuracies2 =[tf.reduce_sum(accuraciesb[j]) / tf.to_float(FLAGS.meta_batch_size) for j in range(num_updates)]
## Summaries
tf.summary.scalar(prefix+'Pre-update loss', total_loss1)
if self.classification:
tf.summary.scalar(prefix+'Pre-update accuracy', total_accuracy1)
for j in range(num_updates):
tf.summary.scalar(prefix+'Post-update loss, step ' + str(j+1), total_losses2[j])
if self.classification:
tf.summary.scalar(prefix+'Post-update accuracy, step ' + str(j+1), total_accuracies2[j])
### Network construction functions
## not CNN
# only used for sinusoid, and for non convolutional DNN on image datasets.
def construct_fc_weights(self):
weights = {}
weights['w1'] = tf.Variable(tf.truncated_normal([self.dim_input, self.dim_hidden[0]], stddev=0.01))
weights['b1'] = tf.Variable(tf.zeros([self.dim_hidden[0]]))
for i in range(1,len(self.dim_hidden)):
weights['w'+str(i+1)] = tf.Variable(tf.truncated_normal([self.dim_hidden[i-1], self.dim_hidden[i]], stddev=0.01))
weights['b'+str(i+1)] = tf.Variable(tf.zeros([self.dim_hidden[i]]))
weights['w'+str(len(self.dim_hidden)+1)] = tf.Variable(tf.truncated_normal([self.dim_hidden[-1], self.dim_output], stddev=0.01))
weights['b'+str(len(self.dim_hidden)+1)] = tf.Variable(tf.zeros([self.dim_output]))
return weights
# only used for sinusoid, and for non convolutional DNN on image datasets.
def forward_fc(self, inp, weights, reuse=False):
hidden = normalize(tf.matmul(inp, weights['w1']) + weights['b1'], activation=tf.nn.relu, reuse=reuse, scope='0')
for i in range(1,len(self.dim_hidden)):
hidden = normalize(tf.matmul(hidden, weights['w'+str(i+1)]) + weights['b'+str(i+1)], activation=tf.nn.relu, reuse=reuse, scope=str(i+1))
return tf.matmul(hidden, weights['w'+str(len(self.dim_hidden)+1)]) + weights['b'+str(len(self.dim_hidden)+1)]
## CNN
# initialize and return weights for CNN
def construct_conv_weights(self):
weights = {}
dtype = tf.float32
conv_initializer = tf.contrib.layers.xavier_initializer_conv2d(dtype=dtype)
fc_initializer = tf.contrib.layers.xavier_initializer(dtype=dtype)
k = 3
weights['conv1'] = tf.get_variable('conv1', [k, k, self.channels, self.dim_hidden], initializer=conv_initializer, dtype=dtype)
weights['b1'] = tf.Variable(tf.zeros([self.dim_hidden]))
weights['conv2'] = tf.get_variable('conv2', [k, k, self.dim_hidden, self.dim_hidden], initializer=conv_initializer, dtype=dtype)
weights['b2'] = tf.Variable(tf.zeros([self.dim_hidden]))
weights['conv3'] = tf.get_variable('conv3', [k, k, self.dim_hidden, self.dim_hidden], initializer=conv_initializer, dtype=dtype)
weights['b3'] = tf.Variable(tf.zeros([self.dim_hidden]))
weights['conv4'] = tf.get_variable('conv4', [k, k, self.dim_hidden, self.dim_hidden], initializer=conv_initializer, dtype=dtype)
weights['b4'] = tf.Variable(tf.zeros([self.dim_hidden]))
if FLAGS.datasource == 'miniimagenet':
# assumes max pooling
weights['w5'] = tf.get_variable('w5', [self.dim_hidden*5*5, self.dim_output], initializer=fc_initializer)
weights['b5'] = tf.Variable(tf.zeros([self.dim_output]), name='b5')
elif FLAGS.datasource == 'cifarfs':
# assumes max pooling
weights['w5'] = tf.get_variable('w5', [self.dim_hidden*2*2, self.dim_output], initializer=fc_initializer)
weights['b5'] = tf.Variable(tf.zeros([self.dim_output]), name='b5')
else:
weights['w5'] = tf.Variable(tf.random_normal([self.dim_hidden, self.dim_output]), name='w5')
weights['b5'] = tf.Variable(tf.zeros([self.dim_output]), name='b5')
return weights
# return output of input image, with weights given as argument!
def forward_conv(self, inp, weights, reuse=False, scope=''):
# reuse is for the normalization parameters.
channels = self.channels
inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])
hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse, scope+'0')
hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse, scope+'1')
hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse, scope+'2')
hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse, scope+'3')
if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'cifarfs':
# last hidden layer is 6x6x64-ish, reshape to a vector
hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
else:
hidden4 = tf.reduce_mean(hidden4, [1, 2])
return tf.matmul(hidden4, weights['w5']) + weights['b5']