-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
166 lines (143 loc) · 4.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import json
from pathlib import Path
import torch
from ray import tune
from fstream import io
from refine import refine
def main():
args = parse_arguments()
data = args.data
output = args.output
if not output:
output = data / "REFINE_results"
output.mkdir(parents=True, exist_ok=True)
no_cuda = args.no_cuda
device = torch.device(
"cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
)
regularization = args.regularization
learning_rate = args.learning_rate
epochs = args.epochs
shape_ratio = args.shape_ratio
r_ratio = args.r_ratio
batch_size = args.batch_size
search_space = {
"regularization_constant": tune.grid_search(regularization),
"learning_rate": tune.grid_search(learning_rate),
"epochs": tune.grid_search(epochs),
"layer_shape_ratio": tune.grid_search(shape_ratio),
"r_ratio": tune.grid_search(r_ratio),
"batch_size": tune.grid_search(batch_size),
}
objective = objective_generator(data, device)
tuner = tune.Tuner(objective, param_space=search_space)
results = tuner.fit().get_best_result(metric="f1", mode="max").metrics
predicted_scores = results["predicted"]
del results["predicted"]
io.write_scores(predicted_scores, output)
with open(output / "results.json", "w") as f:
json.dump(str(results), f, indent=4)
def objective_generator(dataset, device):
cascades_matrix = io.read_cascades(dataset)
observed_structure = io.read_structure(dataset, observed=True)
ground_truth_structure = io.read_structure(dataset, observed=False)
n, m = cascades_matrix.shape
def objective(config):
regularization_constant = config["regularization_constant"]
learning_rate = config["learning_rate"]
epochs = config["epochs"]
layer_shape_ratio = config["layer_shape_ratio"]
r_ratio = config["r_ratio"]
batch_size = config["batch_size"]
layers_size = [
int(r_ratio * n),
int(r_ratio * n * layer_shape_ratio),
int(r_ratio * n * layer_shape_ratio * layer_shape_ratio),
]
r = int(r_ratio * n)
return refine.refine(
cascades_matrix,
observed_structure,
ground_truth_structure,
r,
layers_size,
regularization_constant,
learning_rate,
epochs,
batch_size,
device,
)
return objective
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--data",
type=Path,
help="Path to the dataset with matrices",
required=True,
)
parser.add_argument(
"-o",
"--output",
type=Path,
help="Path to the output file, images, results",
)
parser.add_argument(
"-n",
"--no_cuda",
action="store_true",
help="Disable CUDA for training auto encoder",
)
parser.add_argument(
"-g",
"--regularization",
type=float,
nargs="+",
help="Regularization constant for auto encoder",
required=True,
)
parser.add_argument(
"-l",
"--learning_rate",
type=float,
nargs="+",
help="Learning rate of training auto encoder",
required=True,
)
parser.add_argument(
"-e",
"--epochs",
type=int,
nargs="+",
help="Epochs num for training",
required=True,
)
parser.add_argument(
"-s",
"--shape_ratio",
type=float,
nargs="+",
help="Layer size reduction",
required=True,
)
parser.add_argument(
"-r",
"--r_ratio",
type=float,
nargs="+",
help="Dimension reduction ratio",
required=True,
)
parser.add_argument(
"-b",
"--batch_size",
type=int,
nargs="+",
help="Batch size of SGD",
required=True,
)
return parser.parse_args()
if __name__ == "__main__":
main()