-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_faces_image.py
62 lines (47 loc) · 2.14 KB
/
detect_faces_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import argparse
import cv2
def construct_argument_parser():
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required= True, type= str,
help= "Path to Input Image")
ap.add_argument("-p", "--prototxt", required= True,
help= "Path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required= True,
help= "path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
return vars(ap.parse_args())
# sourcery skip: simplify-numeric-comparison
if __name__ == "__main__":
args = construct_argument_parser()
# load model
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# load image
image = cv2.imread(args["image"])
(h,w) = image.shape[:2]
# resize image
image_resized = cv2.resize(image, (300,300))
blob = cv2.dnn.blobFromImage(image_resized, 1.0,
# size of the blob
(300,300),
# normalization factor (Mean Substraction from Each Channel)
(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence> args["confidence"]:
box = detections[0,0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the bounding box of the face along with the associated
# probability
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY-10> 10 else startY+10
cv2.rectangle(image, (startX, startY), (endX, endY), (0,0,255), 2)
cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0,0,255), 2)
cv2.imshow("Face Detection", image)
cv2.waitKey(0)