-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_faces_webcam.py
92 lines (59 loc) · 2.55 KB
/
detect_faces_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import argparse
import cv2
from imutils.video import VideoStream
import imutils
import time
def construct_argument_parser():
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required= True,
help= "Path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required= True,
help= "path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
return vars(ap.parse_args())
if __name__ == "__main__":
args = construct_argument_parser()
# load model
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialize the video stream and allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src= 0).start()
time.sleep(2.0)
# Loop Over Frames from video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width= 400)
(h,w) = frame.shape[:2]
target = (300,300)
blob = cv2.dnn.blobFromImage(cv2.resize(frame, target), 1.0, target, (104.0, 177.0, 123.0))
# input the blob to network and run predictions
net.setInput(blob)
detections = net.forward()
# draw boxes
for i in range(detections.shape[2]):
# confidence
confidence = detections[0,0,i,2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence < args["confidence"]:
continue
# compute the (x, y)-coordinates of the bounding box for the
# object
box = detections[0,0,i, 3:7] * np.array([w,h,w,h])
(startX, startY, endX, endY) = box.astype('int')
text = "{:2f}%".format(confidence * 100)
y = startY-10 if startY-10 > 10 else startY+10
cv2.rectangle(frame, (startX, startY), (endX, endY), (0,0,255), 2)
cv2.putText(frame, text , (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0,0, 255), 2)
cv2.imshow("Realtime Face Detection", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
cv2.destroyAllWindows()
vs.stop()