Audio-WestlakeU
/
Microphone-Array-Generalization-for-Multichannel-Narrowband-Deep-Speech-Enhancement
Public
forked from RusselZHANG/Microphone-Array-Generalization-for-Multichannel-Narrowband-Deep-Speech-Enhancement
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
191 lines (128 loc) · 6.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 17 15:26:54 2020
@author: admin
"""
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from NB_Dataset import NB_Dataset
from PW_NBDF_Net import PW_NBDF
import matplotlib.pyplot as plt
import os
import numpy as np
import time
import argparse
from tqdm import tqdm
SEED = 123
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
np.random.seed(SEED)
parser = argparse.ArgumentParser( "PW-NBDF base")
parser.add_argument('--datapath', type=str, default='../FaSNet/NF_WHITE_random_ref_order_train_data/PW_NBDF_adjusted_batch', help='path to tr_val_data')
parser.add_argument('--gpuid', type=int, default=7, help='Using which gpu')
parser.add_argument('--MA', type=int, default=1, help='Whether use magnitude augmentation')
parser.add_argument('--num_epoch', type=int, default=15, help='Number of Epoch for training')
parser.add_argument('--n_workers', type=int, default=4, help='Num_workers: if on PC, set 0')
parser.add_argument('--time_steps', type=int, default=192, help='The number of frames in each batch')
parser.add_argument('--lr', type=float, default=1e-3, help='Fine tuning learning rate')
parser.add_argument('--batch_size', type=int, default=512, help='Batch size')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = '{}'.format(args.gpuid)
print(torch.cuda.is_available())
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
print(torch.cuda.get_device_name(0))
# CUDA for PyTorch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Device is :', device)
torch.cuda.empty_cache()
NowTime = time.localtime()
if __name__ == "__main__":
train_path = '{}/train_batch/'.format(args.datapath)
val_path = '{}/validation_batch/'.format(args.datapath)
iter_count = 0
time_step = args.time_steps
batch_size = args.batch_size
def count_parameters(model):
return sum(p.numel() for p in network.parameters() if p.requires_grad)
print("##################### Trainning model ###########################")
network = PW_NBDF()
print(f'The model has {count_parameters(network):,} trainable parameters')
network.to(device)
optimizer = optim.Adam(network.parameters(), lr=args.lr)
loss_function = nn.MSELoss()
writer = SummaryWriter( 'runs/Fine_tuning_{}/'.format(time.strftime("%Y-%m-%d-%H-%M-%S", NowTime)))
if args.MA:
modelpath = 'PW_NBDF_MA_models/'
else:
modelpath = 'PW_NBDF_models/'
if not os.path.isdir(modelpath):
os.makedirs(modelpath)
loss_train_epoch = []
loss_val_epoch = []
loss_train_sequence = []
loss_val_sequence = []
for epoch in range(args.num_epoch):
train_NBDataset = NB_Dataset(data_path = train_path, batchsize = batch_size, time_steps=time_step, shuffle = True)
val_NBDataset = NB_Dataset(data_path = val_path, batchsize = batch_size, time_steps=time_step, shuffle = True)
train_loader = DataLoader(
dataset=train_NBDataset, # torch TensorDataset format
batch_size=1, # mini batch size
shuffle=True, # random shuffle for training
drop_last=True,
num_workers=args.n_workers, # subprocesses for loading data
)
val_loader = DataLoader(
dataset=val_NBDataset, # torch TensorDataset format
batch_size=1, # mini batch size
shuffle=True, # random shuffle for training
drop_last=True,
num_workers=args.n_workers, # subprocesses for loading data
)
print("############################ Epoch {} ################################".format(epoch+1))
############# Train ############################################################################################################
network.train() # set the network in train mode
for inputs, targets in tqdm(train_loader):
inputs = inputs.squeeze().to(device)
targets = targets.squeeze().to(device)
optimizer.zero_grad()
outputs = network(inputs)
# compute loss
loss = loss_function(outputs,targets)
loss_train_sequence.append(loss.detach().cpu().numpy())
loss.backward()
optimizer.step()
writer.add_scalars('Loss', {"Train": loss.item()},iter_count)
iter_count += 1
loss_train_epoch.append(np.mean(loss_train_sequence[epoch*len(train_loader):(epoch+1)*len(train_loader)]))
############## Validation ######################################################################################################
network.eval()
for inputs, targets in val_loader:
inputs = inputs.squeeze().to(device)
targets = targets.squeeze().to(device)
outputs = network(inputs)
loss = loss_function(outputs,targets)
loss_val_sequence.append(loss.detach().cpu().numpy())
loss_val_epoch.append(np.mean(loss_val_sequence[epoch*len(val_loader):(epoch+1)*len(val_loader)]))
############## Save Model ######################################################################################################
torch.save(network.state_dict(), modelpath + 'network_epoch{}.pth'.format(epoch+1))
############## Loss evaluation ######################################################################################################
np.save(modelpath + 'loss_val_epoch.npy',loss_val_epoch)
np.save(modelpath + 'loss_train_epoch.npy',loss_train_epoch)
curves = [loss_train_epoch, loss_val_epoch]
labels = ['train_loss', 'val_loss']
f1 = plt.figure(epoch+1)
plt.title("MSELoss of general model")
plt.xlabel('Epoch')
plt.ylabel('MSEloss')
# plt.ylim([0.04,0.15])
for i, curve in enumerate(curves):
plt.plot(curve, label = labels[i])
plt.legend()
f1.savefig(modelpath+'Network_loss.png')
writer.add_scalars('Loss', {"Validation": loss_val_epoch[epoch] },iter_count)