Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 1.43 KB

2405.15196.md

File metadata and controls

5 lines (3 loc) · 1.43 KB

DisC-GS: Discontinuity-aware Gaussian Splatting

Recently, Gaussian Splatting, a method that represents a 3D scene as a collection of Gaussian distributions, has gained significant attention in addressing the task of novel view synthesis. In this paper, we highlight a fundamental limitation of Gaussian Splatting: its inability to accurately render discontinuities and boundaries in images due to the continuous nature of Gaussian distributions. To address this issue, we propose a novel framework enabling Gaussian Splatting to perform discontinuity-aware image rendering. Additionally, we introduce a Bézier-boundary gradient approximation strategy within our framework to keep the "differentiability" of the proposed discontinuity-aware rendering process. Extensive experiments demonstrate the efficacy of our framework.

最近,高斯喷溅法,一种将三维场景表示为高斯分布集合的方法,在解决新视角合成任务中获得了显著关注。在本文中,我们指出了高斯喷溅的一个基本局限性:由于高斯分布的连续性质,其无法准确渲染图像中的不连续性和边界。为了解决这个问题,我们提出了一个新框架,使高斯喷溅能够进行感知不连续性的图像渲染。此外,我们在框架中引入了一个贝塞尔边界梯度近似策略,以保持所提出的感知不连续性渲染过程的“可微分性”。广泛的实验表明我们框架的有效性。