Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 1.94 KB

2408.10154.md

File metadata and controls

5 lines (3 loc) · 1.94 KB

LoopSplat: Loop Closure by Registering 3D Gaussian Splats

Simultaneous Localization and Mapping (SLAM) based on 3D Gaussian Splats (3DGS) has recently shown promise towards more accurate, dense 3D scene maps. However, existing 3DGS-based methods fail to address the global consistency of the scene via loop closure and/or global bundle adjustment. To this end, we propose LoopSplat, which takes RGB-D images as input and performs dense mapping with 3DGS submaps and frame-to-model tracking. LoopSplat triggers loop closure online and computes relative loop edge constraints between submaps directly via 3DGS registration, leading to improvements in efficiency and accuracy over traditional global-to-local point cloud registration. It uses a robust pose graph optimization formulation and rigidly aligns the submaps to achieve global consistency. Evaluation on the synthetic Replica and real-world TUM-RGBD, ScanNet, and ScanNet++ datasets demonstrates competitive or superior tracking, mapping, and rendering compared to existing methods for dense RGB-D SLAM.

基于3D高斯投影(3DGS)的同步定位与地图构建(SLAM)最近显示出实现更精确、密集的3D场景地图的潜力。然而,现有的基于3DGS的方法未能通过回环闭合和/或全局束调整来解决场景的全局一致性问题。为此,我们提出了LoopSplat,它以RGB-D图像作为输入,利用3DGS子地图和帧对模型跟踪进行密集映射。LoopSplat在线触发回环闭合,并直接通过3DGS配准计算子地图之间的相对回环边约束,相较于传统的全局到局部点云配准,提高了效率和准确性。它采用了一种稳健的位姿图优化方法,通过刚性对齐子地图来实现全局一致性。在合成的Replica数据集和真实世界的TUM-RGBD、ScanNet以及ScanNet++数据集上的评估显示,相较于现有的密集RGB-D SLAM方法,LoopSplat在跟踪、映射和渲染方面表现出竞争力或更优的性能。