-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifier.py
142 lines (111 loc) · 3.53 KB
/
Classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from sklearn.svm import SVC
import csv
from copy import deepcopy
import pickle
def cut_csv(csv_file, lst, table=False):
"""Returns desired data from Training_data"""
r = csv.reader(open(csv_file))
m = list(r)
selected = deepcopy(lst)
header = m[0]
m = m[1:]
labels = header[1:-1]
X_train = []
y_train = []
files = []
if selected[8] and len(header[8:-1]) > 0:
# Added Genomes selected
del selected[8]
selected = selected + ([True] * len(header[9:-1]))
else:
# Added Genomes not selected
del selected[8]
selected = selected + ([False] * len(header[9:-1]))
# creating matrix
for i in range(len(m)):
X_train.append(m[i][1:-1])
y_train.append(m[i][-1])
files.append(m[i][0])
# Deleting Cols
for i in range(len(X_train)):
for j in range(len(X_train[i]) - 1, -1, -1):
if selected[j]:
pass
else:
del X_train[i][j]
# Deleting Rows
valid = ['None']
for i in range(len(selected)):
if selected[i]:
valid.append(labels[i])
for i in range(len(X_train) - 1, -1, -1):
if y_train[i] not in valid:
del y_train[i]
del X_train[i]
del files[i]
if table:
# Inserting Infos for Table
for i in range(len(X_train)):
X_train[i].insert(0, files[i])
X_train[i].append(y_train[i])
for i in range(len(header) - 1, -1, -1):
if header[i] not in valid:
del header[i]
header.insert(0, 'File')
header.append('Label')
X_train.insert(0, header)
else:
pass
return X_train, y_train
def cut_csv_spec(csv_file):
"""Returns svm Training_data"""
# read the training-data
r = csv.reader(open(csv_file))
m = list(r)
header = m[0]
m = m[1:]
X_train = []
y_train = []
# creating matrix as input for the classifier
for i in range(len(m)):
X_train.append(m[i][1:-1])
y_train.append(m[i][-1])
return X_train, y_train
def classify(csv_file, result, lst):
""" Classifys Result-vector and calculates needed vectors"""
r = csv.reader(open(csv_file))
m = list(r)
# deciding which kernel-function will be used
if m[0][1] == "IC1":
mode = "ClAssT"
X_train, y_train = cut_csv(csv_file, lst)
svm = SVC(kernel='poly', C=1.0).fit(X_train, y_train)
else:
mode = "XspecT"
X_train, y_train = cut_csv_spec(csv_file)
svm = SVC(kernel='rbf', C=1.5).fit(X_train, y_train)
# perform a prediction using the svm
prediction = svm.predict([result])
if mode == "XspecT":
if max(result) < 0.3:
prediction = ["sp.", 0]
else:
if max(result) < 0.3:
prediction = ["None", 0]
return prediction[0]
def IC3_classify(result_2):
ic = 'International Clonetype 3 (ST32 or ST250)'
m_3 = [['GCF_000278625.1', 1.0, ic],
['GCF_001674185.1', 0.86, ic],
['fictional', 0.85, 'NONE of the selected Clonetypes or Genomes'],
['fictional', 0.01, 'NONE of the selected Clonetypes or Genomes']]
X = []
y = []
for i in range(len(m_3)):
X.append(m_3[i][1])
y.append(m_3[i][2])
for i in range(len(X)):
X[i] = [X[i]]
svm_IC3 = SVC(kernel='poly', C=1).fit(X, y)
return svm_IC3.predict([result_2]), result_2[0]
#https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html