-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.v
244 lines (216 loc) · 5.18 KB
/
tree.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
module tree
import arrays
import datagen
import math
import rand
pub fn name() string {
return 'decision tree'
}
pub fn most_common<T>(y []T) T {
mut max_count := 0
mut most_frequent := T(0)
for i in 0 .. y.len {
mut count := 0
for j in 0 .. y.len {
if y[i] == y[j] {
count += 1
}
}
if count > max_count {
max_count = count
most_frequent = y[i]
}
}
return most_frequent
}
fn entropy<T>(y []T) f64 {
mut hist := map[T]int{}
for i in 0 .. y.len {
hist[y[i]] += 1
}
mut probs := hist.values().map(it / f64(y.len))
mut logits := probs.filter(it > 0).map(-1 * it * math.log2(it))
return arrays.sum(logits) or { panic('failed to sum array') }
}
pub fn accuracy(y_true []f64, y_pred []f64) f64 {
mut acc := 0.0
for t in 0 .. math.min(y_true.len, y_pred.len) {
if y_true[t] == y_pred[t] {
acc += 1
}
}
return acc / y_true.len
}
type Feature = []f64 | []int | []string
pub type Tree = Empty | Node
pub struct Empty {}
pub struct Node {
mut:
feature int
threshold f64
left Tree
right Tree
value f64
}
fn init_node(feature int, threshold f64, left Node, right Node, value f64) Tree {
return Node{mut feature, threshold, left, right, value}
}
fn (n Node) is_leaf() bool {
return n.value > 0
}
pub struct DecisionTree {
mut:
min_samples_split int
max_depth int
n_feats int
root Tree
}
pub fn init_tree(min_samples_split int, max_depth int, n_feats int) DecisionTree {
return DecisionTree{min_samples_split, max_depth, n_feats, Empty{}}
}
pub fn (mut dt DecisionTree) fit(x [][]f64, y []f64) ? {
if dt.n_feats > 0 {
dt.n_feats = math.min(dt.n_feats, x.len)
} else {
dt.n_feats = x[0].len
}
dt.root = dt.grow_tree(x, y, 0)
}
pub fn (mut dt DecisionTree) predict(x [][]f64) []f64 {
mut predictions := []f64{}
for datum in x {
predictions << traverse(datum, dt.root)
}
return predictions
}
fn traverse(x []f64, node Tree) f64 {
match node {
Empty {
return -1.0
}
Node {
if node.is_leaf() {
return node.value
}
if x[node.feature] <= node.threshold {
return traverse(x, node.left)
}
return traverse(x, node.right)
}
}
}
fn (dt DecisionTree) grow_tree(x [][]f64, y []f64, depth int) Node {
n_samples := x.len
n_features := match n_samples {
0 { 0 }
1 { x[0].len }
else { x[0].len }
}
mut yuniq := map[f64]f64{}
for yq in y {
yuniq[yq] = yq
}
n_labels := yuniq.len
// stopping criteria
if depth >= dt.max_depth || n_labels == 1 || n_samples < dt.min_samples_split {
leaf_value := most_common(y)
return Node{0, 0.0, Empty{}, Empty{}, leaf_value}
}
mut n_feat_array := []int{}
for n in 0 .. n_features {
n_feat_array << n
}
feature_indices := rand.choose<int>(n_feat_array, dt.n_feats) or {
panic('failed to create feat indices')
}
// greedily select the best split according to information gain
best_feat, best_thresh := best_criteria<f64>(x, y, feature_indices)
// grow the children that result from the split
left_idxs, right_idxs := split<f64>(x[..][best_feat], best_thresh)
xlix := left_idxs.map(x[it])
xrix := right_idxs.map(x[it])
ylix := left_idxs.map(y[it])
yrix := right_idxs.map(y[it])
left := dt.grow_tree(xlix, ylix, depth + 1)
right := dt.grow_tree(xrix, yrix, depth + 1)
return Node{best_feat, best_thresh, left, right, 0}
}
fn split<T>(x_column []T, split_thresh T) ([]int, []int) {
mut left_idxs := []int{}
mut right_idxs := []int{}
for i in 0 .. x_column.len {
if x_column[i] <= split_thresh {
left_idxs << i
} else {
right_idxs << i
}
}
return left_idxs, right_idxs
}
fn unique<T>(all []T) []T {
mut s := map[T]T{}
for a in all {
s[a] = a
}
return s.keys()
}
fn best_criteria<T>(x [][]T, y []T, feat_idxs []int) (int, T) {
mut best_gain := -1.0
mut split_idx := 0
mut split_thresh := 0.0
for feat_idx in feat_idxs {
mut x_column := []T{}
for xc in 0 .. x.len {
x_column << x[xc][feat_idx]
}
thresholds := unique(x_column) // TODO make a unique function
for threshold in thresholds {
// gain := feat_idxs.len / y.len
gain := info_gain(y, x_column, threshold)
if gain > best_gain {
best_gain = gain
split_idx = feat_idx
split_thresh = threshold
}
}
}
return split_idx, split_thresh
}
fn info_gain<T>(y []T, xcol []T, threshold T) f64 {
parent_entropy := entropy(y)
l, r := split(xcol, threshold)
if l.len == 0.0 {
return 0.0
}
if r.len == 0.0 {
return 0.0
}
ylen := y.len
rlen := r.len
llen := l.len
left_idxs := l.map(y[it])
right_idxs := r.map(y[it])
lentropy := entropy(left_idxs)
rentropy := entropy(right_idxs)
child_entropy := (llen / ylen) * lentropy + (rlen / ylen) * rentropy
return parent_entropy - child_entropy
}
pub fn demo() DecisionTree {
// x = data.data
/*
tx0 := rand.normal(config.NormalConfigStruct{ mu: 50, sigma: 1.0 }) or { 50.0 }
tx1 := rand.exponential(2)
tx2 := rand.binomial(2, 0.65)
*/
num_features := 12
mut src, mut target := datagen.generate_data()
mut clf := init_tree(10, 5, num_features)
clf.fit(src[200..], target[200..]) or { panic('fit failed') }
mut y_pred := clf.predict(src[200..])
mut acc := accuracy(target[200..], y_pred)
println(acc)
y_pred = clf.predict(src[..200])
acc = accuracy(target[..200], y_pred)
println(acc)
return clf
}