-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathremoveWaveletRows.m
46 lines (39 loc) · 1.35 KB
/
removeWaveletRows.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function [img,imgRow] = removeWaveletRows(img,imgRow,data)
% removeEmptyRows Remove rows that have weak frequencies
%
% REQUIRES: img is LiDAR image matrix
% imgRow is a vector of the rows that exist in the image
% MODIFIES: img
% imgRow
% EFFECTS: Removes the rows without frequency from img and removes the
% corresponding row number from imgRow.
% Ex: img = adjusted_data_junecal(1).normalized_data;
% imgRow = 1:178;
% If row 2 is removed, img will have 177 rows and imgRow will be
% the vector [1,3:178]
tempWavelet = [];
tempMax = 0;
badRow = [];
fs = 1/mean(diff(data.time));
equalParts = [1:128; 129:256; 257:384; 385:512; 513:640; 641:768; 769:896; 897:1024];
for row = 1:size(img,1)
tempWavelet = cwt(img(row,:),fs);
tempWavelet = abs(tempWavelet);
tempMax = max(max(tempWavelet));
if tempMax < 0.04
badRow = [badRow row];
else
averages = [];
for i = 1:8
averages = [averages mean(mean(tempWavelet(:,equalParts(i,:))))];
end
averagesDiff = abs(diff(averages));
averagesPercentDiff = averagesDiff ./ averages(2:end);
if sum(averagesPercentDiff < 0.1) == 7
badRow = [badRow row];
end
end
end
img(badRow,:) = [];
imgRow(badRow) = [];
end