-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutils.py
117 lines (93 loc) · 3.86 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import os
from tqdm import tqdm
from torch import nn
import numpy as np
import torchvision
from torch.nn import functional as F
import time
import argparse
def evaluate(device, epoch, model, data_loader, writer):
model.eval()
losses = []
start = time.perf_counter()
with torch.no_grad():
for iter, data in enumerate(tqdm(data_loader)):
_, inputs, targets, _, _ = data
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = F.nll_loss(outputs[0], targets.squeeze(1))
losses.append(loss.item())
writer.add_scalar("Dev_Loss", np.mean(losses), epoch)
return np.mean(losses), time.perf_counter() - start
def visualize(device, epoch, model, data_loader, writer, val_batch_size, train=False):
def save_image(image, tag, val_batch_size):
image -= image.min()
image /= image.max()
grid = torchvision.utils.make_grid(
image, nrow=int(np.sqrt(val_batch_size)), pad_value=0, padding=25
)
writer.add_image(tag, grid, epoch)
model.eval()
with torch.no_grad():
for iter, data in enumerate(tqdm(data_loader)):
_, inputs, targets, _, _ = data
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
output_mask = outputs[0].detach().cpu().numpy()
output_final = np.argmax(output_mask, axis=1).astype(float)
output_final = torch.from_numpy(output_final).unsqueeze(1)
if train == "True":
save_image(targets.float(), "Target_train", val_batch_size)
save_image(output_final, "Prediction_train", val_batch_size)
else:
save_image(targets.float(), "Target", val_batch_size)
save_image(output_final, "Prediction", val_batch_size)
break
def create_train_arg_parser():
parser = argparse.ArgumentParser(description="train setup for segmentation")
parser.add_argument("--train_path", type=str, help="path to img jpg files")
parser.add_argument("--val_path", type=str, help="path to img jpg files")
parser.add_argument(
"--model_type",
type=str,
help="select model type: unet,dcan,dmtn,psinet,convmcd",
)
parser.add_argument("--object_type", type=str, help="Dataset.")
parser.add_argument(
"--distance_type",
type=str,
default="dist_signed",
help="select distance transform type - dist_mask,dist_contour,dist_signed",
)
parser.add_argument("--batch_size", type=int, default=4, help="train batch size")
parser.add_argument(
"--val_batch_size", type=int, default=4, help="validation batch size"
)
parser.add_argument("--num_epochs", type=int, default=150, help="number of epochs")
parser.add_argument("--cuda_no", type=int, default=0, help="cuda number")
parser.add_argument(
"--use_pretrained", type=bool, default=False, help="Load pretrained checkpoint."
)
parser.add_argument(
"--pretrained_model_path",
type=str,
default=None,
help="If use_pretrained is true, provide checkpoint.",
)
parser.add_argument("--save_path", type=str, help="Model save path.")
return parser
def create_validation_arg_parser():
parser = argparse.ArgumentParser(description="train setup for segmentation")
parser.add_argument(
"--model_type",
type=str,
help="select model type: unet,dcan,dmtn,psinet,convmcd",
)
parser.add_argument("--val_path", type=str, help="path to img jpg files")
parser.add_argument("--model_file", type=str, help="model_file")
parser.add_argument("--save_path", type=str, help="results save path.")
parser.add_argument("--cuda_no", type=int, default=0, help="cuda number")
return parser