-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_new.py
361 lines (293 loc) · 12.4 KB
/
resnet_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.distributions import Bernoulli
from .models import register
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
class DropBlock(nn.Module):
def __init__(self, block_size):
super(DropBlock, self).__init__()
self.block_size = block_size
# self.gamma = gamma
# self.bernouli = Bernoulli(gamma)
def forward(self, x, gamma):
# shape: (bsize, channels, height, width)
if self.training:
batch_size, channels, height, width = x.shape
bernoulli = Bernoulli(gamma)
mask = bernoulli.sample(
(batch_size, channels, height - (self.block_size - 1), width - (self.block_size - 1))).cuda()
block_mask = self._compute_block_mask(mask)
countM = block_mask.size()[0] * block_mask.size()[1] * block_mask.size()[2] * block_mask.size()[3]
count_ones = block_mask.sum()
return block_mask * x * (countM / count_ones)
else:
return x
def _compute_block_mask(self, mask):
left_padding = int((self.block_size - 1) / 2)
right_padding = int(self.block_size / 2)
batch_size, channels, height, width = mask.shape
# print ("mask", mask[0][0])
non_zero_idxs = mask.nonzero()
nr_blocks = non_zero_idxs.shape[0]
offsets = torch.stack(
[
torch.arange(self.block_size).view(-1, 1).expand(self.block_size, self.block_size).reshape(-1),
# - left_padding,
torch.arange(self.block_size).repeat(self.block_size), # - left_padding
]
).t().cuda()
offsets = torch.cat((torch.zeros(self.block_size ** 2, 2).cuda().long(), offsets.long()), 1)
if nr_blocks > 0:
non_zero_idxs = non_zero_idxs.repeat(self.block_size ** 2, 1)
offsets = offsets.repeat(nr_blocks, 1).view(-1, 4)
offsets = offsets.long()
block_idxs = non_zero_idxs + offsets
# block_idxs += left_padding
padded_mask = F.pad(mask, (left_padding, right_padding, left_padding, right_padding))
padded_mask[block_idxs[:, 0], block_idxs[:, 1], block_idxs[:, 2], block_idxs[:, 3]] = 1.
else:
padded_mask = F.pad(mask, (left_padding, right_padding, left_padding, right_padding))
block_mask = 1 - padded_mask # [:height, :width]
return block_mask
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, drop_rate=0.0, drop_block=False,
block_size=1, use_se=False, final_relu=True, max_pool=True, residual=True):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.LeakyReLU(0.1)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv3x3(planes, planes)
self.bn3 = nn.BatchNorm2d(planes)
if max_pool:
self.maxpool = nn.MaxPool2d(stride)
else:
self.maxpool = None
self.final_relu = final_relu
self.residual = residual
self.downsample = downsample
self.stride = stride
self.drop_rate = drop_rate
self.num_batches_tracked = 0
self.drop_block = drop_block
self.block_size = block_size
self.DropBlock = DropBlock(block_size=self.block_size)
self.use_se = use_se
if self.use_se:
self.se = SELayer(planes, 4)
def forward(self, x):
self.num_batches_tracked += 1
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.use_se:
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(x)
if self.residual:
out += residual
if self.final_relu:
out = self.relu(out)
if self.maxpool:
out = self.maxpool(out)
if self.drop_rate > 0:
if self.drop_block == True:
feat_size = out.size()[2]
keep_rate = max(1.0 - self.drop_rate / (20 * 2000) * (self.num_batches_tracked), 1.0 - self.drop_rate)
gamma = (1 - keep_rate) / self.block_size ** 2 * feat_size ** 2 / (feat_size - self.block_size + 1) ** 2
out = self.DropBlock(out, gamma=gamma)
else:
out = F.dropout(out, p=self.drop_rate, training=self.training, inplace=True)
return out
class ResNet(nn.Module):
def __init__(self, block, n_blocks, keep_prob=1.0, avg_pool=False, drop_rate=0.0,
dropblock_size=5, num_classes=-1, use_se=False):
super(ResNet, self).__init__()
self.inplanes = 3
self.use_se = use_se
self.layer1 = self._make_layer(block, n_blocks[0], 64,
stride=2, drop_rate=drop_rate)
self.layer2 = self._make_layer(block, n_blocks[1], 160,
stride=2, drop_rate=drop_rate)
self.layer3 = self._make_layer(block, n_blocks[2], 320,
stride=2, drop_rate=drop_rate, drop_block=True, block_size=dropblock_size)
self.layer4 = self._make_layer(block, n_blocks[3], 640,
stride=2, drop_rate=drop_rate, drop_block=True, block_size=dropblock_size)
self.out_dim = 640
if avg_pool:
# self.avgpool = nn.AvgPool2d(5, stride=1)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.keep_prob = keep_prob
self.keep_avg_pool = avg_pool
self.dropout = nn.Dropout(p=1 - self.keep_prob, inplace=False)
self.drop_rate = drop_rate
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# self.num_classes = num_classes
# if self.num_classes > 0:
# self.classifier = nn.Linear(640, self.num_classes)
def _make_layer(self, block, n_block, planes, stride=1, drop_rate=0.0, drop_block=False, block_size=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
if n_block == 1:
layer = block(self.inplanes, planes, stride, downsample, drop_rate, drop_block, block_size, self.use_se)
else:
layer = block(self.inplanes, planes, stride, downsample, drop_rate, self.use_se)
layers.append(layer)
self.inplanes = planes * block.expansion
for i in range(1, n_block):
if i == n_block - 1:
layer = block(self.inplanes, planes, drop_rate=drop_rate, drop_block=drop_block,
block_size=block_size, use_se=self.use_se)
else:
layer = block(self.inplanes, planes, drop_rate=drop_rate, use_se=self.use_se)
layers.append(layer)
return nn.Sequential(*layers)
def forward(self, x, is_feat=False):
x = self.layer1(x)
f0 = x
x = self.layer2(x)
f1 = x
x = self.layer3(x)
f2 = x
x = self.layer4(x)
f3 = x
if self.keep_avg_pool:
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
# feat = x
# if self.num_classes > 0:
# x = self.classifier(x)
#
# if is_feat:
# return [f0, f1, f2, f3, feat], x
# else:
# return x
@register('resnet12')
def resnet12(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-12 model.
"""
model = ResNet(BasicBlock, [1, 1, 1, 1], keep_prob=keep_prob, avg_pool=avg_pool, **kwargs)
return model
@register('resnet18')
def resnet18(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-18 model.
"""
model = ResNet(BasicBlock, [1, 1, 2, 2], keep_prob=keep_prob, avg_pool=avg_pool, **kwargs)
return model
@register('resnet24')
def resnet24(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-24 model.
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], keep_prob=keep_prob, avg_pool=avg_pool, **kwargs)
return model
@register('resnet50')
def resnet50(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-50 model.
indeed, only (3 + 4 + 6 + 3) * 3 + 1 = 49 layers
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], keep_prob=keep_prob, avg_pool=avg_pool, **kwargs)
return model
@register('resnet101')
def resnet101(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-101 model.
indeed, only (3 + 4 + 23 + 3) * 3 + 1 = 100 layers
"""
model = ResNet(BasicBlock, [3, 4, 23, 3], keep_prob=keep_prob, avg_pool=avg_pool, **kwargs)
return model
@register('seresnet12')
def seresnet12(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-12 model.
"""
model = ResNet(BasicBlock, [1, 1, 1, 1], keep_prob=keep_prob, avg_pool=avg_pool, use_se=True, **kwargs)
return model
@register('seresnet18')
def seresnet18(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-18 model.
"""
model = ResNet(BasicBlock, [1, 1, 2, 2], keep_prob=keep_prob, avg_pool=avg_pool, use_se=True, **kwargs)
return model
@register('seresnet24')
def seresnet24(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-24 model.
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], keep_prob=keep_prob, avg_pool=avg_pool, use_se=True, **kwargs)
return model
@register('seresnet50')
def seresnet50(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-50 model.
indeed, only (3 + 4 + 6 + 3) * 3 + 1 = 49 layers
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], keep_prob=keep_prob, avg_pool=avg_pool, use_se=True, **kwargs)
return model
@register('seresnet101')
def seresnet101(keep_prob=1.0, avg_pool=False, **kwargs):
"""Constructs a ResNet-101 model.
indeed, only (3 + 4 + 23 + 3) * 3 + 1 = 100 layers
"""
model = ResNet(BasicBlock, [3, 4, 23, 3], keep_prob=keep_prob, avg_pool=avg_pool, use_se=True, **kwargs)
return model
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--model', type=str, choices=['resnet12', 'resnet18', 'resnet24', 'resnet50', 'resnet101',
'seresnet12', 'seresnet18', 'seresnet24', 'seresnet50',
'seresnet101'])
args = parser.parse_args()
model_dict = {
'resnet12': resnet12,
'resnet18': resnet18,
'resnet24': resnet24,
'resnet50': resnet50,
'resnet101': resnet101,
'seresnet12': seresnet12,
'seresnet18': seresnet18,
'seresnet24': seresnet24,
'seresnet50': seresnet50,
'seresnet101': seresnet101,
}
model = model_dict['resnet12'](avg_pool=False, drop_rate=0.1, dropblock_size=5, num_classes=64)
data = torch.randn(2, 3, 84, 84)
model = model.cuda()
data = data.cuda()
feat = model(data, is_feat=True)
print(feat.shape)
# print(logit.shape)