-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_experiment_n-step.py
93 lines (70 loc) · 2.56 KB
/
_experiment_n-step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gym
import numpy as np
import matplotlib.pyplot as plt
import os, tqdm, time
from pathlib import Path
from environments.grid_world import grid_world
from value_based.Semi_Gradient_SARSA import SG_SARSA
from value_based.Differential_Semi_Gradient_SARSA import SG_SARSA_Differential
from policy_based.REINFORCE import REINFORCE
from tile_coding import tile_coding
params = {
'num_of_runs': 100,
'num_of_episodes' : 1000,
'max_steps' : 1000,
'alpha' : 2 ** (-13),
'gamma' : 0.98,
'beta' : 2 ** (-12),
'n' : 8,
# Creating the tilings
'grid_size' : 5,
'tile_size' : 4,
'num_of_tiles' : 5
}
# Render the board on terminal or not
play_it_per = 100
play_it = False
# environment
env = grid_world(portal=True)
action_space = env.action_space.shape[0]
# tile coding
tilings = tile_coding(env.grid_size[0], params['num_of_tiles'], params['tile_size'], action_space)
state_space = tilings.num_of_tilings
# Keep stats for final print and data
episode_rewards = np.zeros(params['num_of_episodes'])
# Agent created
# agent = SG_SARSA(state_space, action_space, n, params['alpha'], params['gamma'])
agent = SG_SARSA_Differential(state_space, action_space, params['n'], params['alpha'], params['beta'])
# agent = REINFORCE(state_space, action_space, params['alpha'], params['gamma'])
for r in tqdm.tqdm(range(params['num_of_runs'])):
np.random.seed(r+1)
agent.reset_weights()
for ep in range(params['num_of_episodes']):
rewards = []
observations = []
actions = []
obs = tilings.active_tiles(env.reset()) # a x d
score = 0
# while True:
for t in range(params['max_steps']):
action = agent.step(obs)
observations.append(obs)
obs, reward, done = env.step(action)
obs = tilings.active_tiles(obs)
rewards.append(reward)
actions.append(action)
score += reward
if done:
agent.end(observations, actions, rewards)
break
else:
agent.update(observations, actions, rewards)
episode_rewards[ep] += score
print("EP: {} -------- Return: {}".format(ep, score), end="\r", flush=True)
## Saving the data
dir_path = os.path.dirname(os.path.realpath(__file__))
Path(dir_path + "/saves/").mkdir(parents=True, exist_ok=True)
name_addition = input('Enter the file name you want to find the rewards under:')
np.save(dir_path + "/saves/rewards_" + name_addition, episode_rewards)
plt.plot(episode_rewards/params['num_of_runs'])
plt.show()