forked from jcelaya/hdrmerge
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBoxBlur.cpp
142 lines (130 loc) · 4.18 KB
/
BoxBlur.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*
* HDRMerge - HDR exposure merging software.
* Copyright 2012 Javier Celaya
*
* This file is part of HDRMerge.
*
* HDRMerge is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HDRMerge is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HDRMerge. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <cmath>
#include "BoxBlur.hpp"
namespace hdrmerge {
void BoxBlur::blur(size_t radius) {
// From http://blog.ivank.net/fastest-gaussian-blur.html
tmp.reset(new float[width*height]);
size_t hr = std::round(radius*0.39);
boxBlur(hr);
boxBlur(hr);
boxBlur(hr);
tmp.reset();
}
void BoxBlur::boxBlur(size_t radius) {
boxBlurH(radius);
data.swap(tmp);
boxBlurT(radius);
data.swap(tmp);
}
void BoxBlur::boxBlurH(size_t r) {
float iarr = 1.0 / (r+r+1);
#pragma omp parallel for schedule(dynamic)
for (size_t i = 0; i < height; ++i) {
size_t ti = i * width, li = ti, ri = ti + r;
float val = data[li] * (r + 1);
for (size_t j = 0; j < r; ++j) {
val += data[li + j];
}
for (size_t j = 0; j <= r; ++j) {
val += data[ri++] - data[li];
tmp[ti++] = val*iarr;
}
for (size_t j = r + 1; j < width - r; ++j) {
val += data[ri++] - data[li++];
tmp[ti++] = val*iarr;
}
for (size_t j = width - r; j < width; ++j) {
val += data[ri - 1] - data[li++];
tmp[ti++] = val*iarr;
}
}
}
void BoxBlur::boxBlurT(size_t r) {
float iarr = 1.0 / (r+r+1);
const int numCols = 8; // process numCols columns at once for better usage of L1 cpu cache
#pragma omp parallel for schedule(dynamic,4)
for (size_t i = 0; i < width-numCols+1; i+=numCols) {
size_t ti = i, li = ti, ri = ti + r*width;
float val[numCols];
for(size_t k=0;k<numCols;++k)
val[k] = data[li+k] * (r + 1);
for(size_t k=0;k<numCols;++k)
for (size_t j = 0; j < r; ++j) {
val[k] += data[li + j*width + k];
}
for (size_t j = 0; j <= r; ++j) {
for(size_t k=0;k<numCols;++k) {
val[k] += data[ri+k] - data[li+k];
tmp[ti+k] = val[k]*iarr;
}
ri += width;
ti += width;
}
for (size_t j = r + 1; j < height - r; ++j) {
for(size_t k=0;k<numCols;++k) {
val[k] += data[ri+k] - data[li+k];
tmp[ti+k] = val[k]*iarr;
}
li += width;
ri += width;
ti += width;
}
for (size_t j = height - r; j < height; ++j) {
for(size_t k=0;k<numCols;++k) {
val[k] += data[ri - width + k] - data[li+ k];
tmp[ti+k] = val[k]*iarr;
}
li += width;
ti += width;
}
}
// process the remaining columns
for (size_t i = width - (width%numCols); i < width; ++i) {
size_t ti = i, li = ti, ri = ti + r*width;
float val = data[li] * (r + 1);
for (size_t j = 0; j < r; ++j) {
val += data[li + j*width];
}
for (size_t j = 0; j <= r; ++j) {
val += data[ri] - data[li];
tmp[ti] = val*iarr;
ri += width;
ti += width;
}
for (size_t j = r + 1; j < height - r; ++j) {
val += data[ri] - data[li];
tmp[ti] = val*iarr;
li += width;
ri += width;
ti += width;
}
for (size_t j = height - r; j < height; ++j) {
val += data[ri - width] - data[li];
tmp[ti] = val*iarr;
li += width;
ti += width;
}
}
}
} // namespace hdrmerge