forked from jcelaya/hdrmerge
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathImage.cpp
263 lines (240 loc) · 9.02 KB
/
Image.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*
* HDRMerge - HDR exposure merging software.
* Copyright 2012 Javier Celaya
*
* This file is part of HDRMerge.
*
* HDRMerge is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HDRMerge is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HDRMerge. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Image.hpp"
#include "Bitmap.hpp"
#include "Histogram.hpp"
#include "Log.hpp"
#include "RawParameters.hpp"
using namespace std;
using namespace hdrmerge;
void Image::ResponseFunction::setLinear(double slope) {
threshold = 65535;
linear = slope;
alglib::real_1d_array x = "[0.0, 0.0]";
alglib::real_1d_array f = "[0.0, 65535.0]";
x[1] = 65535.0 / linear;
alglib::spline1dbuildlinear(x, f, 2, nonLinear);
}
void Image::buildImage(uint16_t * rawImage, const RawParameters & params) {
resize(params.width, params.height);
size_t size = width*height;
brightness = 0.0;
max = 0;
for (size_t y = 0, ry = params.topMargin; y < height; ++y, ++ry) {
for (size_t x = 0, rx = params.leftMargin; x < width; ++x, ++rx) {
uint16_t v = rawImage[ry*params.rawWidth + rx];
(*this)(x, y) = v;
brightness += v;
if (v > max) max = v;
}
}
brightness /= size;
response.setLinear(params.max == 0 ? 1.0 : 65535.0 / params.max);
subtractBlack(params);
}
Image & Image::operator=(Image && move) {
*static_cast<Array2D<uint16_t> *>(this) = (Array2D<uint16_t> &&)std::move(move);
scaled.swap(move.scaled);
satThreshold = move.satThreshold;
max = move.max;
brightness = move.brightness;
response = move.response;
halfLightPercent = move.halfLightPercent;
return *this;
}
void Image::setSaturationThreshold(uint16_t sat) {
satThreshold = sat;
response.threshold = 0.9*sat;
}
void Image::subtractBlack(const RawParameters & params) {
if (params.hasBlack()) {
for (size_t y = 0, pos = 0; y < height; ++y) {
for (size_t x = 0; x < width; ++x, ++pos) {
if ((*this)[pos] > params.blackAt(x, y)) {
(*this)[pos] -= params.blackAt(x, y);
} else {
(*this)[pos] = 0;
}
}
}
}
}
double Image::getRelativeExposure() const {
return response.linear;
}
void Image::computeResponseFunction(const Image & r) {
int reldx = dx - std::max(dx, r.dx);
int relrdx = r.dx - std::max(dx, r.dx);
int w = width + reldx + relrdx;
int reldy = dy - std::max(dy, r.dy);
int relrdy = r.dy - std::max(dy, r.dy);
int h = height + reldy + relrdy;
uint16_t * usePixels = &data[-reldy*width - reldx];
const uint16_t * rUsePixels = &r.data[-relrdy*width - relrdx];
// Get average relative values between this image and the last one
std::vector<std::pair<int, double>> histogram(max + 1);
for (auto & i : histogram) i = { 0, 0.0 };
#pragma omp parallel
{
// use one histogram per thread
std::vector<std::pair<int, double>> histogramThr(max + 1);
for (auto & i : histogramThr) i = { 0, 0.0 };
#pragma omp for nowait
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int pos = y * width + x;
uint16_t v = usePixels[pos];
uint16_t nv = rUsePixels[pos];
if (v >= nv && v < satThreshold) {
histogramThr[v].first++;
histogramThr[v].second += r.response(nv);
}
}
}
#pragma omp critical
{
// join per thread histogram to global one
for(int i=0;i<max+1;i++) {
histogram[i].first += histogramThr[i].first;
histogram[i].second += histogramThr[i].second;
}
}
}
alglib::real_1d_array values, adjValues;
values.setlength(max);
adjValues.setlength(max);
values[0] = 0;
adjValues[0] = 0;
int i = 1;
for (int v = max - 1; v >= max*0.75; --v) {
if (histogram[v].first > 2) {
values[i] = v;
adjValues[i] = histogram[v].second / histogram[v].first;
++i;
}
}
if (i >= max/8) {
alglib::ae_int_t info;
alglib::spline1dfitreport rep;
alglib::spline1dfitpenalized(values, adjValues, i, 200, 3, info, response.nonLinear, rep);
response.linear = alglib::spline1dcalc(response.nonLinear, response.threshold) / response.threshold;
} else {
response.threshold = 65535;
// Fallback method for dark images:
// Minimize square error between images:
// min. C(n) = sum(n*f(x) - g(x))^2 -> n = sum(f(x)*g(x)) / sum(f(x)^2)
double numerator = 0, denom = 0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int pos = y * width + x;
double v = usePixels[pos];
double nv = rUsePixels[pos];
if (v >= nv && v < satThreshold) {
numerator += v * r.response(nv);
denom += v * v;
}
}
}
response.linear = numerator / denom;
}
}
size_t Image::alignWith(const Image & r) {
dx = dy = 0;
const double tolerance = 1.0/16;
Histogram histFull(begin(), end());
double halfLightPercent = histFull.getFraction(satThreshold) / 2.0;
size_t totalError = 0;
for (int s = scaleSteps - 1; s >= 0; --s) {
size_t curWidth = width >> (s + 1);
size_t curHeight = height >> (s + 1);
size_t minError = curWidth*curHeight;
Histogram hist1(r.scaled[s].begin(), r.scaled[s].end());
Histogram hist2(scaled[s].begin(), scaled[s].end());
uint16_t mth1 = hist1.getPercentile(halfLightPercent);
uint16_t mth2 = hist2.getPercentile(halfLightPercent);
uint16_t tolPixels1 = (uint16_t)std::floor(mth1*tolerance);
uint16_t tolPixels2 = (uint16_t)std::floor(mth2*tolerance);
Bitmap mtb1(curWidth, curHeight), mtb2(curWidth, curHeight),
excl1(curWidth, curHeight), excl2(curWidth, curHeight);
mtb1.mtb(r.scaled[s].begin(), mth1);
mtb2.mtb(scaled[s].begin(), mth2);
excl1.exclusion(r.scaled[s].begin(), mth1, tolPixels1);
excl2.exclusion(scaled[s].begin(), mth2, tolPixels2);
Bitmap shiftMtb(curWidth, curHeight), shiftExcl(curWidth, curHeight);
int curDx = dx, curDy = dy;
for (int i = -1; i <= 1; ++i) {
for (int j = -1; j <= 1; ++j) {
shiftMtb.shift(mtb2, curDx + i, curDy + j);
shiftExcl.shift(excl2, curDx + i, curDy + j);
shiftMtb.bitwiseXor(mtb1);
shiftMtb.bitwiseAnd(excl1);
shiftMtb.bitwiseAnd(shiftExcl);
size_t err = shiftMtb.count();
if (err < minError) {
dx = curDx + i;
dy = curDy + j;
minError = err;
}
}
}
dx <<= 1;
dy <<= 1;
totalError += minError;
}
return totalError;
}
void Image::preScale() {
size_t curWidth = width;
size_t curHeight = height;
Array2D<uint16_t> * r2 = this;
scaled.reset(new Array2D<uint16_t>[scaleSteps]);
for (int s = 0; s < scaleSteps; ++s) {
scaled[s].resize(curWidth >>= 1, curHeight >>= 1);
for (size_t y = 0, prevY = 0; y < curHeight; ++y, prevY += 2) {
for (size_t x = 0, prevX = 0; x < curWidth; ++x, prevX += 2) {
uint32_t value1 = (*r2)(prevX, prevY),
value2 = (*r2)(prevX + 1, prevY),
value3 = (*r2)(prevX, prevY + 1),
value4 = (*r2)(prevX + 1, prevY + 1);
scaled[s](x, y) = (value1 + value2 + value3 + value4) >> 2;
}
}
r2 = &scaled[s];
}
}
uint16_t Image::getMaxAround(size_t x, size_t y) const {
uint16_t result = 0;
if ((int)y > dy) {
if ((int)x > dx) result = std::max(result, (*this)(x - 1, y - 1));
result = std::max(result, (*this)(x, y - 1));
if (x < width + dx - 1) result = std::max(result, (*this)(x + 1, y - 1));
}
if ((int)x > dx) result = std::max(result, (*this)(x - 1, y));
result = std::max(result, (*this)(x, y));
if (x < width + dx - 1) result = std::max(result, (*this)(x + 1, y));
if (y < height + dy - 1) {
if ((int)x > dx) result = std::max(result, (*this)(x - 1, y + 1));
result = std::max(result, (*this)(x, y + 1));
if (x < width + dx - 1) result = std::max(result, (*this)(x + 1, y + 1));
}
return result;
}