-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathfeature_extraction.py
141 lines (115 loc) · 4.92 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
FEATURE EXTRACTION
This script extracts features from the final (non-classification) layers of
the pre-trained deep neural network models included in Keras.
"""
from keras.applications.vgg16 import VGG16
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.xception import Xception
from keras.applications.mobilenet import MobileNet
from keras.preprocessing.image import ImageDataGenerator
from model import create_model
import numpy as np
import argparse
import string
import os
import joblib
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--train", required=True,
help="path to the train image directory")
ap.add_argument("-test", "--test", required=True,
help="path to the test image directory")
ap.add_argument("-o", "--out_dir", default=os.getcwd(),
help="directory to output features")
ap.add_argument("-model", "--model",
type=str, default="vgg16",
help="name of pre-trained network to use")
ap.add_argument("-c", "--colour",
type=str, default="rgb",
help="choose whether to load gray scale or color images")
ap.add_argument("-b", "--batch",
type=int, default=3,
help="set batch size for feature extraction")
#ap.add_argument("-i", "--input_shape",
# type=tuple, default=None,
# help="set input shape for models")
args = vars(ap.parse_args())
# define a dictionary that maps model names to their classes
MODELS = {
"vgg16": VGG16,
"inception": InceptionV3,
"xception": Xception,
"resnet": ResNet50,
"mobilenet": MobileNet
}
# ensure a valid model name was supplied via command line argument
if args["model"] not in MODELS.keys():
raise AssertionError("The --model command line argument should "
"be a key in the `MODELS` dictionary")
# Create label dictionary
label_dict = {pos: letter
for pos, letter in enumerate(string.ascii_uppercase)}
# define batch size
batch_size = args["batch"]
# define input tensor
input_shape = (224, 224, 3)
# load pre-trained transfer learning model
print("[INFO] loading {}...".format(args["model"]))
transfer_model = create_model(model=args["model"],
top_model=False,
color_mode=args["colour"],
input_shape=input_shape)
print("[INFO] model loaded.")
# ==== TO BE INCLUDED: Extract features from an arbitrary intermediate layer
# ====================
# define train data generator
train_datagen = ImageDataGenerator(rescale=1.,
featurewise_center=True)
train_datagen.mean = np.array([103.939, 116.779, 123.68], dtype=np.float32).reshape(1, 1, 3)
train_generator = train_datagen.flow_from_directory(
args['train'],
target_size=(244, 244),
batch_size=batch_size,
class_mode="categorical",
color_mode=args['colour'],
shuffle=False
)
# define test data generator
test_datagen = ImageDataGenerator(rescale=1.,
featurewise_center=True)
test_datagen.mean = np.array([103.939, 116.779, 123.68], dtype=np.float32).reshape(1, 1, 3)
test_generator = test_datagen.flow_from_directory(
args['test'],
target_size=(244, 244),
batch_size=batch_size,
class_mode="categorical",
color_mode=args['colour'],
shuffle=False
)
##############################
train_steps_per_epoch = int(train_generator.samples//batch_size)
test_steps_per_epoch = int(test_generator.samples//batch_size)
##############################
# extract features
print("[INFO] extracting training features...")
train_bottleneck_features = transfer_model.predict_generator(train_generator, steps=train_steps_per_epoch)
print("[INFO] extracting test features...")
test_bottleneck_features = transfer_model.predict_generator(test_generator, steps=test_steps_per_epoch)
# save bottleneck features
print("[INFO] saving features...")
train_features_dir = os.path.join(args['out_dir'], args['model'] + "_train_bottleneck_features.pkl")
joblib.dump(train_bottleneck_features, train_features_dir)
test_features_dir = os.path.join(args['out_dir'], args['model'] + "_test_bottleneck_features.pkl")
joblib.dump(test_bottleneck_features, test_features_dir)
# save bottleneck labels
print("[INFO] saving labels...")
train_labels = list(train_generator.classes)
test_labels = list(test_generator.classes)
train_labels_dir = os.path.join(args['out_dir'], args['model'] + "_train_bottleneck_labels.pkl")
joblib.dump(train_labels, train_labels_dir)
test_labels_dir = os.path.join(args['out_dir'], args['model'] + "_test_bottleneck_labels.pkl")
joblib.dump(test_labels, test_labels_dir)