-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathsstring.h
3500 lines (3175 loc) · 75.4 KB
/
sstring.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2011, Ben Langmead <[email protected]>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef SSTRING_H_
#define SSTRING_H_
#include <string.h>
#include <iostream>
#include "assert_helpers.h"
#include "alphabet.h"
#include "random_source.h"
#include "util.h"
/**
* Four kinds of strings defined here:
*
* SString:
* A fixed-length string using heap memory with size set at construction time
* or when install() member is called.
*
/ * S2bDnaString:
* Like SString, but stores a list uint32_t words where each word is divided
* into 16 2-bit slots interpreted as holding one A/C/G/T nucleotide each.
*
* TODO: S3bDnaString allowing N. S4bDnaString allowing nucleotide masks.
*
* SStringExpandable:
* A string using heap memory where the size of the backing store is
* automatically resized as needed. Supports operations like append, insert,
* erase, etc.
*
* SStringFixed:
* A fixed-length string using stack memory where size is set at compile
* time.
*
* All string classes have some extra facilities that make it easy to print the
* string, including when the string uses an encoded alphabet. See toZBuf()
* and toZBufXForm().
*
* Global lt, eq, and gt template functions are supplied. They are capable of
* doing lexicographical comparisons between any of the three categories of
* strings defined here.
*/
template<typename T>
class Class_sstr_len {
public:
static inline size_t sstr_len(const T& s) {
return s.length();
}
};
template<unsigned N>
class Class_sstr_len<const char[N]> {
public:
static inline size_t sstr_len(const char s[N]) {
return strlen(s);
}
};
template<>
class Class_sstr_len<const char *> {
public:
static inline size_t sstr_len(const char *s) {
return strlen(s);
}
};
template<>
class Class_sstr_len<const unsigned char *> {
public:
static inline size_t sstr_len(const unsigned char *s) {
return strlen((const char *)s);
}
};
template<typename T1, typename T2>
static inline bool sstr_eq(const T1& s1, const T2& s2) {
size_t len1 = Class_sstr_len<T1>::sstr_len(s1);
size_t len2 = Class_sstr_len<T2>::sstr_len(s2);
if(len1 != len2) return false;
for(size_t i = 0; i < len1; i++) {
if(s1[i] != s2[i]) return false;
}
return true;
}
template<typename T1, typename T2>
static inline bool sstr_neq(const T1& s1, const T2& s2) {
return !sstr_eq(s1, s2);
}
/**
* Return true iff the given suffix of s1 is equal to the given suffix of s2 up
* to upto characters.
*/
template<typename T1, typename T2>
static inline bool sstr_suf_upto_eq(
const T1& s1, size_t suf1,
const T2& s2, size_t suf2,
size_t upto,
bool endlt = true)
{
assert_leq(suf1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(suf2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = Class_sstr_len<T1>::sstr_len(s1) - suf1;
size_t len2 = Class_sstr_len<T2>::sstr_len(s2) - suf2;
if(len1 > upto) len1 = upto;
if(len2 > upto) len2 = upto;
if(len1 != len2) return false;
for(size_t i = 0; i < len1; i++) {
if(s1[suf1+i] != s2[suf2+i]) {
return false;
}
}
return true;
}
/**
* Return true iff the given suffix of s1 is equal to the given suffix of s2 up
* to upto characters.
*/
template<typename T1, typename T2>
static inline bool sstr_suf_upto_neq(
const T1& s1, size_t suf1,
const T2& s2, size_t suf2,
size_t upto,
bool endlt = true)
{
return !sstr_suf_upto_eq(s1, suf1, s2, suf2, upto, endlt);
}
/**
* Return true iff s1 is less than s2.
*/
template<typename T1, typename T2>
static inline bool sstr_lt(const T1& s1, const T2& s2, bool endlt = true) {
size_t len1 = Class_sstr_len<T1>::sstr_len(s1);
size_t len2 = Class_sstr_len<T2>::sstr_len(s2);
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[i] < s2[i]) {
return true;
} else if(s1[i] > s2[i]) {
return false;
}
}
if(len1 == len2) return false;
return (len1 < len2) == endlt;
}
/**
* Return true iff the given suffix of s1 is less than the given suffix of s2.
*/
template<typename T1, typename T2>
static inline bool sstr_suf_lt(
const T1& s1, size_t suf1,
const T2& s2, size_t suf2,
bool endlt = true)
{
assert_leq(suf1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(suf2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = Class_sstr_len<T1>::sstr_len(s1) - suf1;
size_t len2 = Class_sstr_len<T2>::sstr_len(s2) - suf2;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[suf1+i] < s2[suf2+i]) {
return true;
} else if(s1[suf1+i] > s2[suf2+i]) {
return false;
}
}
if(len1 == len2) return false;
return (len1 < len2) == endlt;
}
/**
* Return true iff the given suffix of s1 is less than the given suffix of s2.
* Treat s1 and s2 as though they have lengths len1/len2.
*/
template<typename T1, typename T2>
static inline bool sstr_suf_lt(
const T1& s1, size_t suf1, size_t len1,
const T2& s2, size_t suf2, size_t len2,
bool endlt = true)
{
assert_leq(suf1, len1);
assert_leq(suf2, len2);
size_t left1 = len1 - suf1;
size_t left2 = len2 - suf2;
size_t minleft = (left1 < left2 ? left1 : left2);
for(size_t i = 0; i < minleft; i++) {
if(s1[suf1+i] < s2[suf2+i]) {
return true;
} else if(s1[suf1+i] > s2[suf2+i]) {
return false;
}
}
if(left1 == left2) return false;
return (left1 < left2) == endlt;
}
/**
* Return true iff the given suffix of s1 is less than the given suffix of s2
* up to upto characters.
*/
template<typename T1, typename T2>
static inline bool sstr_suf_upto_lt(
const T1& s1, size_t suf1,
const T2& s2, size_t suf2,
size_t upto,
bool endlt = true)
{
assert_leq(suf1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(suf2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = Class_sstr_len<T1>::sstr_len(s1) - suf1;
size_t len2 = Class_sstr_len<T2>::sstr_len(s2) - suf2;
if(len1 > upto) len1 = upto;
if(len2 > upto) len2 = upto;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[suf1+i] < s2[suf2+i]) {
return true;
} else if(s1[suf1+i] > s2[suf2+i]) {
return false;
}
}
if(len1 == len2) return false;
return (len1 < len2) == endlt;
}
/**
* Return true iff the given prefix of s1 is less than the given prefix of s2.
*/
template<typename T1, typename T2>
static inline bool sstr_pre_lt(
const T1& s1, size_t pre1,
const T2& s2, size_t pre2,
bool endlt = true)
{
assert_leq(pre1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(pre2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = pre1;
size_t len2 = pre2;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[i] < s2[i]) {
return true;
} else if(s1[i] > s2[i]) {
return false;
}
}
if(len1 == len2) return false;
return (len1 < len2) == endlt;
}
/**
* Return true iff s1 is less than or equal to s2.
*/
template<typename T1, typename T2>
static inline bool sstr_leq(const T1& s1, const T2& s2, bool endlt = true) {
size_t len1 = Class_sstr_len<T1>::sstr_len(s1);
size_t len2 = Class_sstr_len<T2>::sstr_len(s2);
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[i] < s2[i]) {
return true;
} else if(s1[i] > s2[i]) {
return false;
}
}
if(len1 == len2) return true;
return (len1 < len2) == endlt;
}
/**
* Return true iff the given suffix of s1 is less than or equal to the given
* suffix of s2.
*/
template<typename T1, typename T2>
static inline bool sstr_suf_leq(
const T1& s1, size_t suf1,
const T2& s2, size_t suf2,
bool endlt = true)
{
assert_leq(suf1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(suf2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = Class_sstr_len<T1>::sstr_len(s1) - suf1;
size_t len2 = Class_sstr_len<T2>::sstr_len(s2) - suf2;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[suf1+i] < s2[suf2+i]) {
return true;
} else if(s1[suf1+i] > s2[suf2+i]) {
return false;
}
}
if(len1 == len2) return true;
return (len1 < len2) == endlt;
}
/**
* Return true iff the given prefix of s1 is less than or equal to the given
* prefix of s2.
*/
template<typename T1, typename T2>
static inline bool sstr_pre_leq(
const T1& s1, size_t pre1,
const T2& s2, size_t pre2,
bool endlt = true)
{
assert_leq(pre1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(pre2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = pre1;
size_t len2 = pre2;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[i] < s2[i]) {
return true;
} else if(s1[i] > s2[i]) {
return false;
}
}
if(len1 == len2) return true;
return (len1 < len2) == endlt;
}
/**
* Return true iff s1 is greater than s2.
*/
template<typename T1, typename T2>
static inline bool sstr_gt(const T1& s1, const T2& s2, bool endlt = true) {
size_t len1 = Class_sstr_len<T1>::sstr_len(s1);
size_t len2 = Class_sstr_len<T2>::sstr_len(s2);
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[i] > s2[i]) {
return true;
} else if(s1[i] < s2[i]) {
return false;
}
}
if(len1 == len2) return false;
return (len1 > len2) == endlt;
}
/**
* Return true iff the given suffix of s1 is greater than the given suffix of
* s2.
*/
template<typename T1, typename T2>
static inline bool sstr_suf_gt(
const T1& s1, size_t suf1,
const T2& s2, size_t suf2,
bool endlt = true)
{
assert_leq(suf1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(suf2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = Class_sstr_len<T1>::sstr_len(s1) - suf1;
size_t len2 = Class_sstr_len<T2>::sstr_len(s2) - suf2;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[suf1+i] > s2[suf2+i]) {
return true;
} else if(s1[suf1+i] < s2[suf2+i]) {
return false;
}
}
if(len1 == len2) return false;
return (len1 > len2) == endlt;
}
/**
* Return true iff the given prefix of s1 is greater than the given prefix of
* s2.
*/
template<typename T1, typename T2>
static inline bool sstr_pre_gt(
const T1& s1, size_t pre1,
const T2& s2, size_t pre2,
bool endlt = true)
{
assert_leq(pre1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(pre2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = pre1;
size_t len2 = pre2;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[i] > s2[i]) {
return true;
} else if(s1[i] < s2[i]) {
return false;
}
}
if(len1 == len2) return false;
return (len1 > len2) == endlt;
}
/**
* Return true iff s1 is greater than or equal to s2.
*/
template<typename T1, typename T2>
static inline bool sstr_geq(const T1& s1, const T2& s2, bool endlt = true) {
size_t len1 = Class_sstr_len<T1>::sstr_len(s1);
size_t len2 = Class_sstr_len<T2>::sstr_len(s2);
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[i] > s2[i]) {
return true;
} else if(s1[i] < s2[i]) {
return false;
}
}
if(len1 == len2) return true;
return (len1 > len2) == endlt;
}
/**
* Return true iff the given suffix of s1 is greater than or equal to the given
* suffix of s2.
*/
template<typename T1, typename T2>
static inline bool sstr_suf_geq(
const T1& s1, size_t suf1,
const T2& s2, size_t suf2,
bool endlt = true)
{
assert_leq(suf1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(suf2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = Class_sstr_len<T1>::sstr_len(s1) - suf1;
size_t len2 = Class_sstr_len<T2>::sstr_len(s2) - suf2;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[suf1+i] > s2[suf2+i]) {
return true;
} else if(s1[suf1+i] < s2[suf2+i]) {
return false;
}
}
if(len1 == len2) return true;
return (len1 > len2) == endlt;
}
/**
* Return true iff the given prefix of s1 is greater than or equal to the given
* prefix of s2.
*/
template<typename T1, typename T2>
static inline bool sstr_pre_geq(
const T1& s1, size_t pre1,
const T2& s2, size_t pre2,
bool endlt = true)
{
assert_leq(pre1, Class_sstr_len<T1>::sstr_len(s1));
assert_leq(pre2, Class_sstr_len<T2>::sstr_len(s2));
size_t len1 = pre1;
size_t len2 = pre2;
size_t minlen = (len1 < len2 ? len1 : len2);
for(size_t i = 0; i < minlen; i++) {
if(s1[i] > s2[i]) {
return true;
} else if(s1[i] < s2[i]) {
return false;
}
}
if(len1 == len2) return true;
return (len1 > len2) == endlt;
}
template<typename T>
static inline const char * sstr_to_cstr(const T& s) {
return s.toZBuf();
}
template<>
inline const char * sstr_to_cstr<std::basic_string<char> >(
const std::basic_string<char>& s)
{
return s.c_str();
}
/**
* Simple string class with backing memory whose size is managed by the user
* using the constructor and install() member function. No behind-the-scenes
* reallocation or copying takes place.
*/
template<typename T>
class SString {
public:
explicit SString() :
cs_(NULL),
printcs_(NULL),
len_(0)
{ }
explicit SString(size_t sz) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
resize(sz);
}
/**
* Create an SString from another SString.
*/
SString(const SString<T>& o) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
*this = o;
}
/**
* Create an SString from a std::basic_string of the
* appropriate type.
*/
explicit SString(const std::basic_string<T>& str) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
install(str.c_str(), str.length());
}
/**
* Create an SString from an array and size.
*/
explicit SString(const T* b, size_t sz) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
install(b, sz);
}
/**
* Create an SString from a zero-terminated array.
*/
explicit SString(const T* b) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
install(b, strlen(b));
}
/**
* Destroy the expandable string object.
*/
virtual ~SString() {
if(cs_ != NULL) {
delete[] cs_;
cs_ = NULL;
}
if(printcs_ != NULL) {
delete[] printcs_;
printcs_ = NULL;
}
len_ = 0;
}
/**
* Assignment to other SString.
*/
SString<T>& operator=(const SString<T>& o) {
install(o.cs_, o.len_);
return *this;
}
/**
* Assignment to other SString.
*/
SString<T>& operator=(const std::basic_string<T>& o) {
install(o);
return *this;
}
/**
* Resizes the string without preserving its contents.
*/
void resize(size_t sz) {
if(cs_ != NULL) {
delete cs_;
cs_ = NULL;
}
if(printcs_ != NULL) {
delete printcs_;
printcs_ = NULL;
}
if(sz != 0) {
cs_ = new T[sz+1];
}
len_ = sz;
}
/**
* Return ith character from the left of either the forward or the
* reverse version of the read.
*/
T windowGet(
size_t i,
bool fw,
size_t depth = 0,
size_t len = 0) const
{
if(len == 0) len = len_;
assert_lt(i, len);
assert_leq(len, len_ - depth);
return fw ? cs_[depth+i] : cs_[depth+len-i-1];
}
/**
* Return ith character from the left of either the forward or the
* reverse-complement version of the read.
*/
void windowGet(
T& ret,
bool fw,
size_t depth = 0,
size_t len = 0) const
{
if(len == 0) len = len_;
assert_leq(len, len_ - depth);
ret.resize(len);
for(size_t i = 0; i < len; i++) {
ret.set(fw ? cs_[depth+i] : cs_[depth+len-i-1], i);
}
}
/**
* Set character at index 'idx' to 'c'.
*/
inline void set(int c, size_t idx) {
assert_lt(idx, len_);
cs_[idx] = c;
}
/**
* Retrieve constant version of element i.
*/
inline const T& operator[](size_t i) const {
assert_lt(i, len_);
return cs_[i];
}
/**
* Retrieve mutable version of element i.
*/
inline T& operator[](size_t i) {
assert_lt(i, len_);
return cs_[i];
}
/**
* Retrieve constant version of element i.
*/
inline const T& get(size_t i) const {
assert_lt(i, len_);
return cs_[i];
}
/**
* Copy 'sz' bytes from buffer 'b' into this string. memcpy is used, not
* operator=.
*/
virtual void install(const T* b, size_t sz) {
if(sz == 0) return;
resize(sz);
memcpy(cs_, b, sz * sizeof(T));
}
/**
* Copy 'sz' bytes from buffer 'b' into this string. memcpy is used, not
* operator=.
*/
virtual void install(const std::basic_string<T>& b) {
size_t sz = b.length();
if(sz == 0) return;
resize(sz);
memcpy(cs_, b.c_str(), sz * sizeof(T));
}
/**
* Copy all bytes from zero-terminated buffer 'b' into this string.
*/
void install(const T* b) {
install(b, strlen(b));
}
/**
* Copy 'sz' bytes from buffer 'b' into this string, reversing them
* in the process.
*/
void installReverse(const char* b, size_t sz) {
if(sz == 0) return;
resize(sz);
for(size_t i = 0; i < sz; i++) {
cs_[i] = b[sz-i-1];
}
len_ = sz;
}
/**
* Copy 'sz' bytes from buffer 'b' into this string, reversing them
* in the process.
*/
void installReverse(const SString<T>& b) {
installReverse(b.cs_, b.len_);
}
/**
* Return true iff the two strings are equal.
*/
bool operator==(const SString<T>& o) {
return sstr_eq(*this, o);
}
/**
* Return true iff the two strings are not equal.
*/
bool operator!=(const SString<T>& o) {
return sstr_neq(*this, o);
}
/**
* Return true iff this string is less than given string.
*/
bool operator<(const SString<T>& o) {
return sstr_lt(*this, o);
}
/**
* Return true iff this string is greater than given string.
*/
bool operator>(const SString<T>& o) {
return sstr_gt(*this, o);
}
/**
* Return true iff this string is less than or equal to given string.
*/
bool operator<=(const SString<T>& o) {
return sstr_leq(*this, o);
}
/**
* Return true iff this string is greater than or equal to given string.
*/
bool operator>=(const SString<T>& o) {
return sstr_geq(*this, o);
}
/**
* Reverse the buffer in place.
*/
void reverse() {
for(size_t i = 0; i < (len_ >> 1); i++) {
T tmp = get(i);
set(get(len_-i-1), i);
set(tmp, len_-i-1);
}
}
/**
* Reverse a substring of the buffer in place.
*/
void reverseWindow(size_t off, size_t len) {
assert_leq(off, len_);
assert_leq(off + len, len_);
size_t mid = len >> 1;
for(size_t i = 0; i < mid; i++) {
T tmp = get(off+i);
set(get(off+len-i-1), off+i);
set(tmp, off+len-i-1);
}
}
/**
* Set the first len elements of the buffer to el.
*/
void fill(size_t len, const T& el) {
assert_leq(len, len_);
for(size_t i = 0; i < len; i++) {
set(el, i);
}
}
/**
* Set all elements of the buffer to el.
*/
void fill(const T& el) {
fill(len_, el);
}
/**
* Return the length of the string.
*/
inline size_t length() const { return len_; }
/**
* Clear the buffer.
*/
void clear() { len_ = 0; }
/**
* Return true iff the buffer is empty.
*/
inline bool empty() const { return len_ == 0; }
/**
* Put a terminator in the 'len_'th element and then return a
* pointer to the buffer. Useful for printing.
*/
const char* toZBufXForm(const char *xform) const {
ASSERT_ONLY(size_t xformElts = strlen(xform));
// Lazily allocate space for print buffer
if(printcs_ == NULL) {
const_cast<char*&>(printcs_) = new char[len_+1];
}
char* printcs = const_cast<char*>(printcs_);
assert(printcs != NULL);
for(size_t i = 0; i < len_; i++) {
assert_lt(cs_[i], (int)xformElts);
printcs[i] = xform[cs_[i]];
}
printcs[len_] = 0;
return printcs_;
}
/**
* Put a terminator in the 'len_'th element and then return a
* pointer to the buffer. Useful for printing.
*/
virtual const T* toZBuf() const {
const_cast<T*>(cs_)[len_] = 0;
return cs_;
}
/**
* Return a const version of the raw buffer.
*/
const T* buf() const { return cs_; }
/**
* Return a writeable version of the raw buffer.
*/
T* wbuf() { return cs_; }
protected:
T *cs_; // +1 so that we have the option of dropping in a terminating "\0"
char *printcs_; // +1 so that we have the option of dropping in a terminating "\0"
size_t len_; // # elements
};
/**
* Simple string class with backing memory whose size is managed by the user
* using the constructor and install() member function. No behind-the-scenes
* reallocation or copying takes place.
*/
class S2bDnaString {
public:
explicit S2bDnaString() :
cs_(NULL),
printcs_(NULL),
len_(0)
{ }
explicit S2bDnaString(size_t sz) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
resize(sz);
}
/**
* Copy another object of the same class.
*/
S2bDnaString(const S2bDnaString& o) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
*this = o;
}
/**
* Create an S2bDnaString from a std::basic_string of the
* appropriate type.
*/
explicit S2bDnaString(
const std::basic_string<char>& str,
bool chars = false,
bool colors = false) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
if(chars) {
if(colors) {
installColors(str.c_str(), str.length());
} else {
installChars(str.c_str(), str.length());
}
} else {
install(str.c_str(), str.length());
}
}
/**
* Create an S2bDnaString from an array and size.
*/
explicit S2bDnaString(
const char* b,
size_t sz,
bool chars = false,
bool colors = false) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
if(chars) {
if(colors) {
installColors(b, sz);
} else {
installChars(b, sz);
}
} else {
install(b, sz);
}
}
/**
* Create an SStringFixed from a zero-terminated string.
*/
explicit S2bDnaString(
const char* b,
bool chars = false,
bool colors = false) :
cs_(NULL),
printcs_(NULL),
len_(0)
{
if(chars) {
if(colors) {
installColors(b, strlen(b));
} else {
installChars(b, strlen(b));
}
} else {
install(b, strlen(b));
}
}
/**
* Destroy the expandable string object.
*/
virtual ~S2bDnaString() {
if(cs_ != NULL) {
delete[] cs_;
cs_ = NULL;
}
if(printcs_ != NULL) {
delete[] printcs_;
printcs_ = NULL;
}
len_ = 0;
}
/**
* Assignment to other SString.
*/
template<typename T>
S2bDnaString& operator=(const T& o) {
install(o.c_str(), o.length());
return *this;