-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOptimizer.hpp
199 lines (167 loc) · 6.39 KB
/
Optimizer.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#ifndef OPTIMIZER_HPP
#define OPTIMIZER_HPP
#include <Eigen/Dense>
#include <vector>
#include <cassert>
#include <stdexcept>
enum OptimizerMode {
FullyConnectedMode = -1,
BatchNormalizationMode = -2
};
class Optimizer {
public:
virtual void updateStep(Eigen::MatrixXd& parameters, const Eigen::MatrixXd&
gradients, const int paramIndex = 0) = 0;
virtual ~Optimizer() {}
};
// Stochastic Gradient Descent optimizer
class SGD : public Optimizer {
private:
double _learningRate;
public:
SGD(double learningRate = 0.001)
:_learningRate(learningRate)
{
if (learningRate <= 0) {
throw std::invalid_argument("Learning rate must be positive.");
}
}
void updateStep(Eigen::MatrixXd& parameters, const Eigen::MatrixXd& gradients,
const int paramIndex = 0) override
{
validateSize(parameters, gradients);
parameters -= _learningRate * gradients;
}
void updateStep(Eigen::VectorXd& parameters, const Eigen::VectorXd& gradients,
const int paramIndex = 0) const
{
validateSize(parameters, gradients);
parameters -= _learningRate * gradients;
}
private:
void validateSize(const Eigen::MatrixXd& parameters, const Eigen::MatrixXd& gradients) const
{
if (parameters.rows() != gradients.rows() || parameters.cols() != gradients.cols()) {
throw std::invalid_argument("Parameter and gradient sizes must match.");
}
}
void validateSize(const Eigen::VectorXd& parameters, const Eigen::VectorXd& gradients) const
{
if (parameters.size() != gradients.size()) {
throw std::invalid_argument("Parameter and gradient sizes must match.");
}
}
};
// Adam optimizer
class AdamOptimizer :public Optimizer {
private:
const double _learningRate;
const double _beta1;
const double _beta2;
const double _epsilon;
const int _numParams;
size_t _timeStep;
std::vector<Eigen::MatrixXd> _firstMomentEstimate;
std::vector<Eigen::MatrixXd> _secondMomentEstimate;
std::vector<Eigen::VectorXd> _firstMomentEstimateVector;
std::vector<Eigen::VectorXd> _secondMomentEstimateVector;
public:
AdamOptimizer(int numParams, double learningRate = 1e-5, double beta1 = 0.9,
double beta2 = 0.999, double epsilon = 1.0e-8)
: _numParams(numParams),
_learningRate(learningRate),
_beta1(beta1),
_beta2(beta2),
_epsilon(epsilon),
_timeStep(0)
{
if (_numParams != FullyConnectedMode && _numParams != BatchNormalizationMode && _numParams <= 0) {
throw std::invalid_argument(
"Number of parameters must be positive or use special mode values.");
}
}
void updateStep(Eigen::MatrixXd& parameters, const Eigen::MatrixXd& gradients,
const int paramIndex = 0) override
{
validateSize(parameters, gradients);
if (_timeStep == 0) {
_initializeMoments(parameters.rows(), parameters.cols());
}
if (!paramIndex) {
_timeStep++;
}
double biasCorrection1 = 1.0 - std::pow(_beta1, _timeStep);
double biasCorrection2 = 1.0 - std::pow(_beta2, _timeStep);
// calculate moments - m_t, v_t
_firstMomentEstimate[paramIndex] = _beta1 * _firstMomentEstimate[paramIndex].
array() + (1 - _beta1) * gradients.array();
_secondMomentEstimate[paramIndex] = _beta2 * _secondMomentEstimate[paramIndex].
array() + (1 - _beta2) * gradients.array().square();
Eigen::MatrixXd firstMomentEstimateHat = _firstMomentEstimate[paramIndex]
/ biasCorrection1;
Eigen::MatrixXd secondMomentEstimateHat = _secondMomentEstimate[paramIndex]
/ biasCorrection2;
parameters -= (_learningRate * firstMomentEstimateHat.array() /
(secondMomentEstimateHat.array().sqrt() + _epsilon)).matrix();
}
void updateStep(Eigen::VectorXd& parameters, Eigen::VectorXd& gradients,
const int paramIndex = 0)
{ //Vector version - overlaod
validateSize(parameters, gradients);
if (_timeStep == 0) {
_initializeMoments(parameters.size(), parameters.size());
}
if (!paramIndex and _numParams == BatchNormalizationMode) {
_timeStep++;
}
double biasCorrection1 = 1.0 - std::pow(_beta1, _timeStep);
double biasCorrection2 = 1.0 - std::pow(_beta2, _timeStep);
_firstMomentEstimateVector[paramIndex] = _beta1 * _firstMomentEstimateVector[paramIndex].
array() + (1 - _beta1) * gradients.array();
_secondMomentEstimateVector[paramIndex] = _beta2 * _secondMomentEstimateVector[paramIndex].
array() + (1 - _beta2) * gradients.array().square();
Eigen::VectorXd firstMomentEstimateHat = _firstMomentEstimateVector[paramIndex]
/ biasCorrection1;
Eigen::VectorXd secondMomentEstimateHat = _secondMomentEstimateVector[paramIndex]
/ biasCorrection2;
parameters -= (_learningRate * firstMomentEstimateHat.array() /
(secondMomentEstimateHat.array().sqrt() + _epsilon)).matrix();
}
private:
void validateSize(const Eigen::MatrixXd& parameters, const Eigen::MatrixXd& gradients) const
{
if (parameters.rows() != gradients.rows() || parameters.cols() != gradients.cols()) {
throw std::invalid_argument("Parameter and gradient sizes must match.");
}
}
void validateSize(const Eigen::VectorXd& parameters, const Eigen::VectorXd& gradients) const
{
if (parameters.size() != gradients.size()) {
throw std::invalid_argument("Parameter and gradient sizes must match.");
}
}
void _initializeMoments(size_t rows, size_t cols = 0)
{
if (_numParams == FullyConnectedMode) { //Fully-Connected - weights and bias
_firstMomentEstimate.assign(1, Eigen::MatrixXd::Zero(rows, cols));
_secondMomentEstimate.assign(1, Eigen::MatrixXd::Zero(rows, cols));
_firstMomentEstimateVector.assign(1, Eigen::VectorXd::Zero(rows));
_secondMomentEstimateVector.assign(1, Eigen::VectorXd::Zero(rows));
}
else if (_numParams == BatchNormalizationMode) { //BatchNormalization - 2 vectors
_firstMomentEstimateVector.assign(2, Eigen::VectorXd::Zero(rows));
_secondMomentEstimateVector.assign(2, Eigen::VectorXd::Zero(rows));
}
else { //Convolution2D - filters
_firstMomentEstimate.resize(_numParams);
_secondMomentEstimate.resize(_numParams);
for (int i = 0; i < _numParams; ++i) {
_firstMomentEstimate[i] = Eigen::MatrixXd::Zero(rows, cols);
_secondMomentEstimate[i] = Eigen::MatrixXd::Zero(rows, cols);
}
_firstMomentEstimateVector.assign(1, Eigen::VectorXd::Zero(_numParams));
_secondMomentEstimateVector.assign(1, Eigen::VectorXd::Zero(_numParams));
}
}
};
#endif // OPTIMIZER_HPP