-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSimpleCNN.cpp
198 lines (162 loc) · 6.53 KB
/
SimpleCNN.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include "Layers/Convolution2D.hpp"
#include "Layers/FullyConnected.hpp"
#include "Layers/MaxPooling.hpp"
#include "Activation.hpp"
#include "MNISTLoader.hpp"
#include "LossFunction.hpp"
#include "Regularization.hpp"
#include <math.h>
/* TODO:
* TrainMode/TestMode methods
* code std.
*/
const size_t classes = 10;
class SimpleCNN {
private:
//Layers
Convolution2D _conv1;
Convolution2D _conv2;
FullyConnected _fc1;
FullyConnected _fc2;
MaxPooling _pool1;
MaxPooling _pool2;
//Regularization
Dropout _dropout1;
Dropout _dropout2;
public:
CrossEntropy CEloss;
public:
SimpleCNN()
: _conv1(28, 28, 1, 32, 5),
_pool1(24, 24, 32, 2),
_conv2(12, 12, 32, 64, 5),
_pool2(8, 8, 64, 2),
_fc1(4 * 4 * 64, 512, std::make_unique<ReLU>()),
_fc2(512, 10, std::make_unique<Softmax>()),
_dropout1(0.45),
_dropout2(0.35)
{}
Eigen::VectorXd ForwardPass(const Eigen::MatrixXd& input) {
/*Forward propagation*/
std::vector<Eigen::MatrixXd> outputConv1 = _conv1.forward(input);
std::vector<Eigen::MatrixXd> outputPool1 = _pool1.forward(outputConv1);
std::vector<Eigen::MatrixXd> outputDrop1 = _dropout1.forward(outputPool1);
std::vector<Eigen::MatrixXd> outputConv2 = _conv2.forward(outputDrop1);
std::vector<Eigen::MatrixXd> outputPool2 = _pool2.forward(outputConv2);
std::vector<Eigen::MatrixXd> outputDrop2 = _dropout2.forward(outputPool2);
Eigen::VectorXd outputFc1 = _fc1.forward(outputDrop2);
Eigen::VectorXd outputFc2 = _fc2.forward(outputFc1);
return outputFc2;
}
void Backpropagation(Eigen::VectorXd& lossGradient) {
/*Backward*/
Eigen::VectorXd fc2BackGrad = _fc2.backward(lossGradient);
std::vector<Eigen::MatrixXd> fc1BackGrad = _fc1.backward(fc2BackGrad, true);
std::vector<Eigen::MatrixXd> pool2BackGrad = _pool2.backward(fc1BackGrad);
std::vector<Eigen::MatrixXd> conv2BackGrad = _conv2.backward(pool2BackGrad);
std::vector<Eigen::MatrixXd> pool1BackGrad = _pool1.backward(conv2BackGrad);
_conv1.backward(pool1BackGrad);
}
};
double accuracyCalculation(std::vector<Eigen::VectorXd>& modelOutput,
const std::vector<Eigen::VectorXd>& oneHotTargets) {
if (modelOutput.size() != oneHotTargets.size()) {
throw std::invalid_argument("Input vectors have different sizes.");
}
double correctPredictions = 0;
size_t dataSize = modelOutput.size();
Eigen::Index predictedClass = 0, trueClass = 0;
for (size_t d = 0; d < dataSize; ++d) {
modelOutput[d].maxCoeff(&predictedClass);
oneHotTargets[d].maxCoeff(&trueClass);
if (predictedClass == trueClass){
correctPredictions++;
}
}
return correctPredictions / static_cast<double>(dataSize) * 100.0;
}
void trainSimpleCNN(MNISTLoader& dataLoader, SimpleCNN& model, size_t epochs = 10)
{
/* Load MNIST Train dataset */
const std::vector<Eigen::MatrixXd>& trainImages =
dataLoader.getTrainImages();
const std::vector<Eigen::VectorXd>& oneHotTrainLabels =
dataLoader.getOneHotTrainLabels();
std::vector<Eigen::VectorXd> trainOutput(dataLoader.numTrain,
Eigen::VectorXd(classes));
std::cout << "\nStart training..." << std::endl;
std::vector<double> trainAccuracy(epochs);
for (size_t epoch = 0; epoch < epochs; ++epoch) {
Eigen::VectorXd outputEpoch(classes);
std::cout << "\nepoch #" << (epoch + 1) << std::endl;
size_t imageNum = 0;
double totalEpochLoss = 0.0;
for (const auto image : trainImages) {
/*Forward pass*/
Eigen::VectorXd singleTrainOutput = model.ForwardPass(image);
trainOutput[imageNum] = singleTrainOutput;
/*Loss*/
totalEpochLoss += model.CEloss.calculateLoss(singleTrainOutput,
oneHotTrainLabels[imageNum]);
Eigen::VectorXd lossGrad = model.CEloss.calculateGradient(
singleTrainOutput, oneHotTrainLabels[imageNum]);
/*Backpropagation*/
model.Backpropagation(lossGrad);
/*TEST*/
if (imageNum % 100 == 0) {
std::cout << imageNum << ": " << std::endl;
std::cout << singleTrainOutput << std::endl << std::endl;
if (isnan(singleTrainOutput[0])) {
std::cout << "\nimage No. : " << imageNum << std::endl;
exit(EXIT_FAILURE);
}
}
if (imageNum % 10000 == 0 and imageNum != 0) {
std::vector<Eigen::VectorXd> tempTrainO(&trainOutput[0], &trainOutput[imageNum]);
std::vector<Eigen::VectorXd> tempTrainL(&oneHotTrainLabels[0], &oneHotTrainLabels[imageNum]);
std::cout << "Train Accuracy: " << accuracyCalculation(tempTrainO, tempTrainL) << "%\n" << std::endl;
}
/*TEST*/
imageNum++;
}
trainAccuracy[epoch] = accuracyCalculation(trainOutput,
oneHotTrainLabels);
std::cout << "Train Accuracy: " << trainAccuracy[epoch] << "%"
<< " ; Loss: " << totalEpochLoss << std::endl;
}
}
void testSimpleCNN(MNISTLoader& dataLoader, SimpleCNN& model)
{
/* Load MNIST Test dataset */
const std::vector<Eigen::MatrixXd>& testImages =
dataLoader.getTestImages();
const std::vector<Eigen::VectorXd>& oneHotTestLabels =
dataLoader.getOneHotTestLabels();
std::vector<Eigen::VectorXd> testOutput(dataLoader.numTest,
Eigen::VectorXd(classes));
std::cout << "\nStart testing...\n" << std::endl;
double testAccuracy = 0.0;
size_t imageNum = 0;
for (Eigen::MatrixXd image : testImages) {
Eigen::VectorXd singleTestOutput = model.ForwardPass(image);
testOutput[imageNum] = singleTestOutput;
imageNum++;
}
testAccuracy = accuracyCalculation(testOutput, oneHotTestLabels);
std::cout << "Test Accuracy: " << testAccuracy << "%\n" << std::endl;
}
int main()
{
size_t epochs = 1;
SimpleCNN model;
/* Load MNIST dataset */
MNISTLoader loader("MNIST/train-images.idx3-ubyte", "MNIST/train-labels.idx1-ubyte",
"MNIST/t10k-images.idx3-ubyte", "MNIST/t10k-labels.idx1-ubyte");
if (!loader.loadTrainData() or !loader.loadTestData()) {
std::cerr << "Error: Loading data failed." << std::endl;
return EXIT_FAILURE;
}
trainSimpleCNN(loader, model, epochs);
testSimpleCNN(loader, model);
return EXIT_SUCCESS;
}