-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathneural_style.py
231 lines (161 loc) · 6.61 KB
/
neural_style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import torchvision.transforms as transforms
import torchvision.models as models
import copy
from io import BytesIO
import requests
def download(url):
response = requests.get(url)
binary_data = response.content
temp_file = BytesIO()
temp_file.write(binary_data)
temp_file.seek(0)
return temp_file
def image_loader(image_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
imsize = 512 if torch.cuda.is_available() else 128
loader = transforms.Compose([
transforms.Resize((imsize, imsize)),
transforms.ToTensor()])
image = download(image_path)
image = Image.open(image).convert('RGB')
image = loader(image)
image = image.unsqueeze(0)
return image.to(device, torch.float)
def gram_matrix(input):
a, b, c, d = input.size()
features = input.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
class ContentLoss(nn.Module):
def __init__(self, target, ):
super(ContentLoss, self).__init__()
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
return (img - self.mean) / self.std
# VGG19 ver.
content_layers_default = ['conv_3']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
# resnet50 ver.
# content_layers_default = ['conv_1']
# style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=content_layers_default,
style_layers=style_layers_default):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cnn = copy.deepcopy(cnn)
normalization = Normalization(
normalization_mean, normalization_std).to(device)
content_losses = []
style_losses = []
model = nn.Sequential(normalization)
i = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
elif isinstance(layer, nn.Linear):
name = 'fc_{}'.format(i)
elif isinstance(layer, nn.Sequential):
name = 'sq_{}'.format(i)
elif isinstance(layer, nn.AdaptiveAvgPool2d):
name = 'adap_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(
layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
def get_input_optimizer(input_img):
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
def run_style_transfer(cnn, normalization_mean, normalization_std,
content_img, style_img, input_img, num_steps=350,
style_weight=1000000, content_weight=1):
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn,
normalization_mean, normalization_std, style_img,
content_img)
optimizer = get_input_optimizer(input_img)
print('Optimizing..')
run = [0]
while run[0] <= num_steps:
def closure():
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print()
return style_score + content_score
optimizer.step(closure)
input_img.data.clamp_(0, 1)
return input_img
def set_neural_style(style_image, content_image):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# VGG19 ver.
cnn = models.vgg19(pretrained=True).features.to(device).eval()
# resnet50 ver.
# cnn = models.resnet50(pretrained=True).to(device).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
style_img = image_loader(style_image)
content_img = image_loader(content_image)
assert style_img.size() == content_img.size(), \
"we need to import style and content images of the same size"
input_img = content_img.clone()
return cnn, cnn_normalization_mean, cnn_normalization_std, style_img, content_img, input_img