-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_MRN.py
485 lines (404 loc) · 20.4 KB
/
train_MRN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import math
import os
import sys
import time
import pickle as pkl
import tqdm
from config.MRN import MRNConfig
from logger import Logger
from replay_buffer import ReplayBuffer
from reward_model import RewardModel, set_device
from agent.critic import DoubleQCritic
from collections import deque
from utils import MetaOptim
from agent.sac_MRN import SACAgent
import utils
class Workspace:
def __init__(self, cfg):
self.work_dir = os.getcwd()
self.cfg = cfg
self.logger = Logger(
os.path.join(self.work_dir, 'MRN', cfg.env),
save_tb=cfg.log_save_tb,
log_frequency=cfg.log_frequency,
agent=cfg.agent_name,
train_log_name=cfg.train_log_name,
eval_log_name=cfg.eval_log_name
)
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
self.log_success = False
# make env
if 'metaworld' in cfg.env:
self.env = utils.make_metaworld_env(cfg.env, cfg.seed)
self.log_success = True
else:
self.env = utils.make_env(cfg.env, cfg.seed)
obs_dim = self.env.observation_space.shape[0]
action_dim = self.env.action_space.shape[0]
self.obs_dim = obs_dim
self.action_dim = action_dim
action_range = [
float(self.env.action_space.low.min()),
float(self.env.action_space.high.max())
]
self.agent = SACAgent(
obs_dim, action_dim, action_range, cfg
)
self.replay_buffer = ReplayBuffer(
self.env.observation_space.shape,
self.env.action_space.shape,
int(cfg.replay_buffer_capacity),
self.device
)
# for logging
self.total_feedback = 0
self.labeled_feedback = 0
self.step = 0
# instantiating the reward model
self.reward_model = RewardModel(
self.env.observation_space.shape[0],
self.env.action_space.shape[0],
ensemble_size=cfg.ensemble_size,
size_segment=cfg.segment,
activation=cfg.activation,
lr=cfg.reward_lr,
mb_size=cfg.reward_batch,
large_batch=cfg.large_batch,
label_margin=cfg.label_margin,
teacher_beta=cfg.teacher_beta,
teacher_gamma=cfg.teacher_gamma,
teacher_eps_mistake=cfg.teacher_eps_mistake,
teacher_eps_skip=cfg.teacher_eps_skip,
teacher_eps_equal=cfg.teacher_eps_equal
)
def evaluate(self):
average_episode_reward = 0
average_true_episode_reward = 0
if self.log_success:
success_rate = 0
num_eval_episodes = self.cfg.num_eval_episodes
for episode in range(num_eval_episodes):
obs = self.env.reset()
self.agent.reset()
done = False
episode_reward = 0
true_episode_reward = 0
if self.log_success:
episode_success = 0
while not done:
with utils.eval_mode(self.agent):
action = self.agent.act(obs, sample=False)
obs, reward, done, extra = self.env.step(action)
episode_reward += reward
true_episode_reward += reward
if self.log_success:
episode_success = max(episode_success, extra['success'])
average_episode_reward += episode_reward
average_true_episode_reward += true_episode_reward
if self.log_success:
success_rate += episode_success
average_episode_reward /= num_eval_episodes
average_true_episode_reward /= num_eval_episodes
if self.log_success:
success_rate /= num_eval_episodes
success_rate *= 100.0
self.logger.log('eval/episode_reward', average_episode_reward, self.step)
self.logger.log('eval/true_episode_reward', average_true_episode_reward, self.step)
self.logger.log('eval/num_eval_episodes', num_eval_episodes, self.step)
if self.log_success:
self.logger.log('eval/success_rate', success_rate, self.step)
self.logger.log('eval/true_episode_success', success_rate, self.step)
self.logger.dump(self.step)
def learn_reward(self, first_flag=0):
# get feedbacks
labeled_queries = 0
if first_flag == 1:
# if it is first time to get feedback, need to use random sampling
labeled_queries = self.reward_model.uniform_sampling()
else:
if self.cfg.feed_type == 0:
labeled_queries = self.reward_model.uniform_sampling()
elif self.cfg.feed_type == 1:
labeled_queries = self.reward_model.disagreement_sampling()
elif self.cfg.feed_type == 2:
labeled_queries = self.reward_model.entropy_sampling()
elif self.cfg.feed_type == 3:
labeled_queries = self.reward_model.kcenter_sampling()
elif self.cfg.feed_type == 4:
labeled_queries = self.reward_model.kcenter_disagree_sampling()
elif self.cfg.feed_type == 5:
labeled_queries = self.reward_model.kcenter_entropy_sampling()
else:
raise NotImplementedError
self.total_feedback += self.reward_model.mb_size
self.labeled_feedback += labeled_queries
if self.labeled_feedback > 0:
# update reward
for epoch in range(self.cfg.reward_update):
if self.cfg.label_margin > 0 or self.cfg.teacher_eps_equal > 0:
train_acc = self.reward_model.train_soft_reward()
else:
train_acc = self.reward_model.train_reward()
total_acc = np.mean(train_acc)
if total_acc > 0.97:
break
print("Reward function is updated!! ACC: " + str(total_acc))
def r_hat_critic_old(self, x):
batch_size, segment_length, obsact = x.shape # _ = obs+act
assert obsact == self.env.observation_space.shape[0] + self.env.action_space.shape[0]
obs = x[:, 0, :self.env.observation_space.shape[0]].reshape(batch_size, self.env.observation_space.shape[0])
act = x[:, 0, self.env.observation_space.shape[0]:].reshape(batch_size, self.env.action_space.shape[0])
obs = torch.from_numpy(obs).float().to(self.device)
act = torch.from_numpy(act).float().to(self.device)
q1, q2 = self.agent.critic_old(obs, act)
assert q1.shape == (batch_size, 1)
return q1, q2
def bilevel_update(self):
# sample from replay buffer and get meta reward from reward model (with grad)
obs, action, reward, next_obs, not_done, not_done_no_max = self.replay_buffer.sample(self.agent.batch_size)
inputs = np.concatenate([obs.cpu(), action.cpu()], axis=-1)
reward = self.reward_model.r_hat_batch_grad(inputs)
self.logger.log('train/batch_reward', reward.detach().cpu().numpy().mean(), self.step)
# load parameters of critic_old from current critic
self.agent.critic_old = DoubleQCritic(
self.obs_dim, self.action_dim, self.cfg.critic_hidden_dim, self.cfg.critic_hidden_depth).to(
self.device)
self.agent.update_critic_old()
# calculate target_Q for critic_old
dist = self.agent.actor(next_obs)
next_action = dist.rsample()
log_prob = dist.log_prob(next_action).sum(-1, keepdim=True)
target_Q1, target_Q2 = self.agent.critic_target(next_obs, next_action)
target_V = torch.min(target_Q1, target_Q2) - self.agent.alpha.detach() * log_prob
target_V = target_V.detach()
target_Q = reward + (not_done * self.agent.discount * target_V)
# get Q estimates of critic_old
current_Q1, current_Q2 = self.agent.critic_old(obs, action)
critic_old_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
# optimize the critic_old
pseudo_grads = torch.autograd.grad(critic_old_loss, self.agent.critic_old.parameters(), create_graph=True)
critic_old_optimizer = MetaOptim(self.agent.critic_old, self.agent.critic_old.parameters(), lr=self.cfg.critic_lr)
critic_old_optimizer.load_state_dict(self.agent.critic_optimizer.state_dict())
critic_old_optimizer.meta_step(pseudo_grads)
del pseudo_grads
# calculate loss using trajectory preferences
index = self.reward_model.buffer_index
num_eval_pref = self.cfg.reward_batch
if index < self.cfg.reward_batch:
idxs = np.append(np.arange(index), np.arange(self.reward_model.capacity - num_eval_pref + index, self.reward_model.capacity))
else:
idxs = np.arange(index - num_eval_pref, index)
np.random.shuffle(idxs)
sa_t_1 = self.reward_model.buffer_seg1[idxs] # (B x len_segment x (obs+act))
sa_t_2 = self.reward_model.buffer_seg2[idxs] # (B x len_segment x (obs+act))
labels = self.reward_model.buffer_label[idxs] # (B x 1)
labels = torch.from_numpy(labels.flatten()).long().to(self.device) # (B) [1, 0, 0, 1, 0, 1, 0, 0, 1, 1]
# get r_hat estimates from critic_old
r_hat_critic1_q1, r_hat_critic1_q2 = self.r_hat_critic_old(sa_t_1) # (B x 1)
r_hat_critic2_q1, r_hat_critic2_q2 = self.r_hat_critic_old(sa_t_2) # (B x 1)
r_hat_critic_q1 = torch.cat([r_hat_critic1_q1, r_hat_critic2_q1], axis=-1) # (B x 2)
r_hat_critic_q2 = torch.cat([r_hat_critic1_q2, r_hat_critic2_q2], axis=-1) # (B x 2)
# compute loss CE((B x 2), (B)) + CE((B x 2), (B))
outer_loss = (F.cross_entropy(r_hat_critic_q1, labels) + F.cross_entropy(r_hat_critic_q2, labels)) * self.cfg.outer_weight
# optimize the reward function
self.reward_model.opt.zero_grad()
outer_loss.backward()
self.reward_model.opt.step()
# calculate target_Q for critic
reward = self.reward_model.r_hat_batch(inputs)
reward = torch.as_tensor(reward, device=self.device)
target_Q = (reward + (not_done * self.agent.discount * target_V)).detach()
current_Q1, current_Q2 = self.agent.critic(obs, action)
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
# optimize the critic
self.agent.critic.zero_grad()
critic_loss.backward()
self.agent.critic_optimizer.step()
self.logger.log('train_critic/loss', critic_loss, self.step)
# update actor and alpha
dist = self.agent.actor(obs)
action = dist.rsample()
log_prob = dist.log_prob(action).sum(-1, keepdim=True)
actor_Q1, actor_Q2 = self.agent.critic(obs, action)
actor_Q = torch.min(actor_Q1, actor_Q2)
actor_loss = (self.agent.alpha.detach() * log_prob - actor_Q).mean()
self.logger.log('train_actor/loss', actor_loss, self.step)
self.logger.log('train_actor/target_entropy', self.agent.target_entropy, self.step)
self.logger.log('train_actor/entropy', -log_prob.mean(), self.step)
# optimize the actor
self.agent.actor_optimizer.zero_grad()
actor_loss.backward()
self.agent.actor_optimizer.step()
self.agent.actor.log(self.logger, self.step)
if self.agent.learnable_temperature:
self.agent.log_alpha_optimizer.zero_grad()
alpha_loss = (self.agent.alpha * (-log_prob - self.agent.target_entropy).detach()).mean()
self.logger.log('train_alpha/loss', alpha_loss, self.step)
self.logger.log('train_alpha/value', self.agent.alpha, self.step)
alpha_loss.backward()
self.agent.log_alpha_optimizer.step()
if self.step % self.agent.critic_target_update_frequency == 0: # critic_target_update_frequency = 2
utils.soft_update_params(self.agent.critic, self.agent.critic_target, self.agent.critic_tau)
def run(self):
episode, episode_reward, done = 0, 0, True
if self.log_success:
episode_success = 0
true_episode_reward = 0
# store train returns of recent 10 episodes
avg_train_true_return = deque([], maxlen=10)
start_time = time.time()
fixed_start_time = time.time()
interact_count = 0
while self.step < self.cfg.num_train_steps:
if done:
if self.step > 0:
current_time = time.time()
self.logger.log('train/duration', current_time - start_time, self.step)
self.logger.log('train/total_duration', current_time - fixed_start_time, self.step)
start_time = time.time()
self.logger.dump(self.step, save=(self.step > self.cfg.num_seed_steps))
# evaluate agent periodically
if self.step > 0 and self.step % self.cfg.eval_frequency == 0:
self.logger.log('eval/episode', episode, self.step)
self.evaluate()
self.logger.log('train/episode_reward', episode_reward, self.step)
self.logger.log('train/true_episode_reward', true_episode_reward, self.step)
self.logger.log('train/total_feedback', self.total_feedback, self.step)
self.logger.log('train/labeled_feedback', self.labeled_feedback, self.step)
if self.log_success:
self.logger.log('train/episode_success', episode_success, self.step)
self.logger.log('train/true_episode_success', episode_success, self.step)
interact_obs = self.env.reset() # reset observation
self.agent.reset()
done = False
episode_reward = 0
avg_train_true_return.append(true_episode_reward)
true_episode_reward = 0
if self.log_success:
episode_success = 0
episode_step = 0
episode += 1
self.logger.log('train/episode', episode, self.step)
# sample action for data collection
if self.step < self.cfg.num_seed_steps:
interact_action = self.env.action_space.sample()
else:
with utils.eval_mode(self.agent):
interact_action = self.agent.act(interact_obs, sample=True)
# run training update
if self.step == (self.cfg.num_seed_steps + self.cfg.num_unsup_steps):
# update schedule
if self.cfg.reward_schedule == 1:
frac = (self.cfg.num_train_steps - self.step) / self.cfg.num_train_steps
if frac == 0:
frac = 0.01
elif self.cfg.reward_schedule == 2:
frac = self.cfg.num_train_steps / (self.cfg.num_train_steps - self.step + 1)
else:
frac = 1
self.reward_model.change_batch(frac)
# update margin --> not necessary / will be updated soon
new_margin = np.mean(avg_train_true_return) * (self.cfg.segment / self.env._max_episode_steps)
self.reward_model.set_teacher_thres_skip(new_margin)
self.reward_model.set_teacher_thres_equal(new_margin)
# first learn reward
self.learn_reward(first_flag=1)
# relabel buffer
self.replay_buffer.relabel_with_predictor(self.reward_model)
# reset Q due to unsupervised exploration
self.agent.reset_critic()
# update agent
self.agent.update_after_reset(
self.replay_buffer, self.logger, self.step,
gradient_update=self.cfg.reset_update,
policy_update=True
)
# reset interact_count
interact_count = 0
elif self.step > self.cfg.num_seed_steps + self.cfg.num_unsup_steps:
# update reward function
if self.total_feedback < self.cfg.max_feedback:
if interact_count == self.cfg.num_interact:
# update schedule
if self.cfg.reward_schedule == 1:
frac = (self.cfg.num_train_steps - self.step) / self.cfg.num_train_steps
if frac == 0:
frac = 0.01
elif self.cfg.reward_schedule == 2:
frac = self.cfg.num_train_steps / (self.cfg.num_train_steps - self.step + 1)
else:
frac = 1
self.reward_model.change_batch(frac)
# update margin --> not necessary / will be updated soon
new_margin = np.mean(avg_train_true_return) * (self.cfg.segment / self.env._max_episode_steps)
self.reward_model.set_teacher_thres_skip(new_margin * self.cfg.teacher_eps_skip)
self.reward_model.set_teacher_thres_equal(new_margin * self.cfg.teacher_eps_equal)
# corner case: new total feed > max feed
if self.reward_model.mb_size + self.total_feedback > self.cfg.max_feedback:
self.reward_model.set_batch(self.cfg.max_feedback - self.total_feedback)
self.learn_reward()
self.replay_buffer.relabel_with_predictor(self.reward_model)
interact_count = 0
if self.step % self.cfg.num_meta_steps == 0 and self.total_feedback < self.cfg.max_feedback:
self.bilevel_update()
self.replay_buffer.relabel_with_predictor(self.reward_model)
else:
self.agent.update(self.replay_buffer, self.logger, self.step, 1)
# unsupervised exploration
elif self.step > self.cfg.num_seed_steps:
self.agent.update_state_ent(self.replay_buffer, self.logger, self.step, 1, K=self.cfg.topK)
next_obs, reward, done, extra = self.env.step(interact_action)
reward_hat = self.reward_model.r_hat(np.concatenate([interact_obs, interact_action], axis=-1))
# allow infinite bootstrap
done = float(done)
done_no_max = 0 if episode_step + 1 == self.env._max_episode_steps else done
episode_reward += reward_hat
true_episode_reward += reward
if self.log_success:
episode_success = max(episode_success, extra['success'])
# adding data to the reward training data
self.reward_model.add_data(interact_obs, interact_action, reward, done)
self.replay_buffer.add(interact_obs, interact_action, reward_hat, next_obs, done, done_no_max)
interact_obs = next_obs
episode_step += 1
self.step += 1
interact_count += 1
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--meta_steps', type=int)
parser.add_argument('--seed', type=int)
parser.add_argument('--device', type=str)
parser.add_argument('--eps_equal', type=float)
parser.add_argument('--eps_skip', type=float)
parser.add_argument('--teacher_gamma', type=float)
parser.add_argument('--env', type=str)
parser.add_argument('--actor_lr', type=float)
parser.add_argument('--critic_lr', type=float)
parser.add_argument('--unsup_steps', type=int)
parser.add_argument('--steps', type=int)
parser.add_argument('--num_interact', type=int)
parser.add_argument('--max_feedback', type=int)
parser.add_argument('--reward_batch', type=int)
parser.add_argument('--reward_update', type=int)
parser.add_argument('-b', '--batch_size', type=int)
parser.add_argument('--critic_hidden_dim', type=int)
parser.add_argument('--actor_hidden_dim', type=int)
parser.add_argument('--critic_hidden_depth', type=int)
parser.add_argument('--actor_hidden_depth', type=int)
parser.add_argument('--eps_mistake', type=float)
parser.add_argument('--feed_type', type=int)
parser.add_argument('--ensemble_size', type=int)
args = parser.parse_args()
cfg = MRNConfig(args)
set_device(cfg.device)
workspace = Workspace(cfg)
workspace.run()
if __name__ == '__main__':
main()