-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathclient.py
189 lines (145 loc) · 8.13 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import socket
import time
import struct
from control_algorithm.adaptive_tau import ControlAlgAdaptiveTauClient, ControlAlgAdaptiveTauServer
from data_reader.data_reader import get_data, get_data_train_samples
from models.get_model import get_model
from util.sampling import MinibatchSampling
from util.utils import send_msg, recv_msg
# Configurations are in a separate config.py file
from config import SERVER_ADDR, SERVER_PORT, dataset_file_path
sock = socket.socket()
sock.connect((SERVER_ADDR, SERVER_PORT))
print('---------------------------------------------------------------------------')
batch_size_prev = None
total_data_prev = None
sim_prev = None
try:
while True:
msg = recv_msg(sock, 'MSG_INIT_SERVER_TO_CLIENT')
# ['MSG_INIT_SERVER_TO_CLIENT', model_name, dataset, num_iterations_with_same_minibatch_for_tau_equals_one, step_size, batch_size,
# total_data, use_control_alg, indices_this_node, read_all_data_for_stochastic, use_min_loss, sim]
model_name = msg[1]
dataset = msg[2]
num_iterations_with_same_minibatch_for_tau_equals_one = msg[3]
step_size = msg[4]
batch_size = msg[5]
total_data = msg[6]
control_alg_server_instance = msg[7]
indices_this_node = msg[8]
read_all_data_for_stochastic = msg[9]
use_min_loss = msg[10]
sim = msg[11]
model = get_model(model_name)
model2 = get_model(model_name) # Used for computing loss_w_prev_min_loss for stochastic gradient descent,
# so that the state of model can be still used by control algorithm later.
if hasattr(model, 'create_graph'):
model.create_graph(learning_rate=step_size)
if hasattr(model2, 'create_graph'):
model2.create_graph(learning_rate=step_size)
# Assume the dataset does not change
if read_all_data_for_stochastic or batch_size >= total_data:
if batch_size_prev != batch_size or total_data_prev != total_data or (batch_size >= total_data and sim_prev != sim):
print('Reading all data samples used in training...')
train_image, train_label, _, _, _ = get_data(dataset, total_data, dataset_file_path, sim_round=sim)
batch_size_prev = batch_size
total_data_prev = total_data
sim_prev = sim
if batch_size >= total_data:
sampler = None
train_indices = indices_this_node
else:
sampler = MinibatchSampling(indices_this_node, batch_size, sim)
train_indices = None # To be defined later
last_batch_read_count = None
data_size_local = len(indices_this_node)
if isinstance(control_alg_server_instance, ControlAlgAdaptiveTauServer):
control_alg = ControlAlgAdaptiveTauClient()
else:
control_alg = None
w_prev_min_loss = None
w_last_global = None
total_iterations = 0
msg = ['MSG_DATA_PREP_FINISHED_CLIENT_TO_SERVER']
send_msg(sock, msg)
while True:
print('---------------------------------------------------------------------------')
msg = recv_msg(sock, 'MSG_WEIGHT_TAU_SERVER_TO_CLIENT')
# ['MSG_WEIGHT_TAU_SERVER_TO_CLIENT', w_global, tau, is_last_round, prev_loss_is_min]
w = msg[1]
tau_config = msg[2]
is_last_round = msg[3]
prev_loss_is_min = msg[4]
if prev_loss_is_min or ((w_prev_min_loss is None) and (w_last_global is not None)):
w_prev_min_loss = w_last_global
if control_alg is not None:
control_alg.init_new_round(w)
time_local_start = time.time() #Only count this part as time for local iteration because the remaining part does not increase with tau
# Perform local iteration
grad = None
loss_last_global = None # Only the loss at starting time is from global model parameter
loss_w_prev_min_loss = None
tau_actual = 0
for i in range(0, tau_config):
# When batch size is smaller than total data, read the data here; else read data during client init above
if batch_size < total_data:
# When using the control algorithm, we want to make sure that the batch in the last local iteration
# in the previous round and the first iteration in the current round is the same,
# because the local and global parameters are used to
# estimate parameters used for the adaptive tau control algorithm.
# Therefore, we only change the data in minibatch when (i != 0) or (sample_indices is None).
# The last condition with tau <= 1 is to make sure that the batch will change when tau = 1,
# this may add noise in the parameter estimation for the control algorithm,
# and the amount of noise would be related to NUM_ITERATIONS_WITH_SAME_MINIBATCH.
if (not isinstance(control_alg, ControlAlgAdaptiveTauClient)) or (i != 0) or (train_indices is None) \
or (tau_config <= 1 and
(last_batch_read_count is None or
last_batch_read_count >= num_iterations_with_same_minibatch_for_tau_equals_one)):
sample_indices = sampler.get_next_batch()
if read_all_data_for_stochastic:
train_indices = sample_indices
else:
train_image, train_label = get_data_train_samples(dataset, sample_indices, dataset_file_path)
train_indices = range(0, min(batch_size, len(train_label)))
last_batch_read_count = 0
last_batch_read_count += 1
grad = model.gradient(train_image, train_label, w, train_indices)
if i == 0:
try:
# Note: This has to follow the gradient computation line above
loss_last_global = model.loss_from_prev_gradient_computation()
print('*** Loss computed from previous gradient computation')
except:
# Will get an exception if the model does not support computing loss
# from previous gradient computation
loss_last_global = model.loss(train_image, train_label, w, train_indices)
print('*** Loss computed from data')
w_last_global = w
if use_min_loss:
if (batch_size < total_data) and (w_prev_min_loss is not None):
# Compute loss on w_prev_min_loss so that the batch remains the same
loss_w_prev_min_loss = model2.loss(train_image, train_label, w_prev_min_loss, train_indices)
w = w - step_size * grad
tau_actual += 1
total_iterations += 1
if control_alg is not None:
is_last_local = control_alg.update_after_each_local(i, w, grad, total_iterations)
if is_last_local:
break
# Local operation finished, global aggregation starts
time_local_end = time.time()
time_all_local = time_local_end - time_local_start
print('time_all_local =', time_all_local)
if control_alg is not None:
control_alg.update_after_all_local(model, train_image, train_label, train_indices,
w, w_last_global, loss_last_global)
msg = ['MSG_WEIGHT_TIME_SIZE_CLIENT_TO_SERVER', w, time_all_local, tau_actual, data_size_local,
loss_last_global, loss_w_prev_min_loss]
send_msg(sock, msg)
if control_alg is not None:
control_alg.send_to_server(sock)
if is_last_round:
break
except (struct.error, socket.error):
print('Server has stopped')
pass