-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_baseline.py
120 lines (91 loc) · 3.93 KB
/
main_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import sys
import argparse
import numpy as np
import pdb
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataset_utils import build_dataset, get_mask
from baseline_model import GCN, ChebNet, GAT
from util import edge_index_to_sparse_tensor, Logger, mymkdir, nowdt, set_seed, get_acc
def train(dataset, train_mask, val_mask, test_mask, args):
raw_dataset = dataset['raw_dataset']
device = torch.device('cuda')
data = raw_dataset[0].to(device)
if args.model == 'gcn':
model = GCN(raw_dataset, args.hidden).to(device)
optimizer = torch.optim.Adam([
dict(params=model.conv1.parameters(), weight_decay=5e-4),
dict(params=model.conv2.parameters(), weight_decay=0)
], lr=0.01)
elif args.model == 'cheb':
model = ChebNet(raw_dataset, args.hidden).to(device)
# optimizer = torch.optim.Adam(model.parameters(), weight_decay=5e-4, lr=args.lr)
optimizer = torch.optim.Adam([
dict(params=model.conv1.parameters(), weight_decay=5e-4),
dict(params=model.conv2.parameters(), weight_decay=0)
], lr=0.01)
elif args.model == 'gat':
model = GAT(raw_dataset, args.hidden).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005, weight_decay=5e-4)
y = dataset['labels']
y_onehot = F.one_hot(y)
best_val_acc = 0
best_val_epoch = -1
choosed_test_acc = 0
for epoch in tqdm(range(args.epoch)):
model.train()
pred = model(data)
loss = F.cross_entropy(pred[train_mask], y[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
pred = model(data)
accs = get_acc(pred, y, train_mask, val_mask, test_mask)
if accs[1] > best_val_acc:
best_val_acc = accs[1]
choosed_test_acc = accs[2]
improved = '*'
best_val_epoch = epoch
else:
improved = ''
print(f'Epoch {epoch} trian_loss: {loss.item():.4f} train_acc: {accs[0]:.4f}, val_acc: {accs[1]:.4f}, test_acc: {accs[2]:.4f}/{choosed_test_acc:.4f}{improved}')
if epoch - best_val_epoch > args.patience:
break
return choosed_test_acc, model
def main(args):
print(nowdt())
set_seed(args.seed)
dataset = build_dataset(args.dataset, to_cuda=True)
test_accs = []
for i, (train_mask, val_mask, test_mask) in enumerate(zip(dataset['train_masks'], dataset['val_masks'], dataset['test_masks'])):
print(f'***** Split {i} starts *****')
print(f'Train: {train_mask.sum().item()}, Val: {val_mask.sum().item()}, Test: {test_mask.sum().item()}\n')
test_acc, model = train(dataset, train_mask.cuda(), val_mask.cuda(), test_mask.cuda(), args)
test_accs.append(test_acc)
print('\n\n\n')
print(f'For {len(test_accs)} splits')
print(sorted(test_accs))
print(f'Mean test acc {np.mean(test_accs)*100:.2f} \pm {np.std(test_accs)*100:.2f}')
if args.save:
torch.save(model, f'{args.dataset}_baseline_{args.model}_model')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='Texas')
parser.add_argument('--hidden', type=int, default=64)
parser.add_argument('--dropout', default=0.5, type=float)
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--epoch', type=int, default=400)
parser.add_argument('--n_post_iter', type=int, default=1)
parser.add_argument('--model', type=str, default='gcn')
parser.add_argument('--post', action='store_true')
parser.add_argument('--patience', type=int, default=100)
parser.add_argument('--seed', type=int, default=2020)
parser.add_argument('--save', action='store_true', default=False)
args = parser.parse_args()
print(args)
main(args)