-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_isodistance.py
193 lines (151 loc) · 7.11 KB
/
run_isodistance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
import data
import torch
import torch.nn as nn
from models import SetGen, F_match, F_reconstruct
import torch.multiprocessing as mp
from tensorboardX import SummaryWriter
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', help='model type: srn | mlp | cnn', default="srn")
parser.add_argument('--batch_size', type=int, help='batch size', default=32)
parser.add_argument('--recon', action="store_true" , help='transfer models', default=False)
parser.add_argument('--resume', help='Resume checkpoint', default=None)
parser.add_argument('--lr', type=float, help='lr', default=5e-4)
parser.add_argument('--weight_decay', type=float, help='weight decay', default=0)
parser.add_argument('--inner_lr',type=float, help='inner lr', default=0.1)
parser.add_argument('--save', help='Path of the saved checkpoint', default=None)
args = parser.parse_args()
return args
class Net(nn.Module):
def __init__(self, lr=200):
super(Net, self).__init__()
self.img_encoder = Encoder()
self.proj = nn.Linear(100, 1)
def forward(self, x, y):
all_images = torch.cat((x, y))
x, s = self.img_encoder(all_images)
batch_size = x.size(0) // 2
reference = x[:batch_size,:]
mem = x[batch_size:,:]
x =(reference- mem)**2
return self.proj(x)
class SSLR(nn.Module):
def __init__(self, lr=200, use_srn= True):
super(SSLR, self).__init__()
self.use_srn = use_srn
element_dims=10
set_size=16
self.set_generator = SetGen(element_dims, set_size, lr, use_srn)
self.f_match = F_match()
self.f_reconstruct = F_reconstruct(element_dims)
def forward(self, x, y, pool):
all_images = torch.cat((x, y))
x, losses = self.set_generator(all_images)
batch_size = x.size(0) // 2
match_dist, match_score = self.f_match(x[:batch_size,:,:], x[batch_size:,:,:], pool)
generated_f, _ = self.f_reconstruct(x[:batch_size,:,:])
if self.use_srn:
return match_dist, losses, match_score, generated_f
else:
return match_dist, match_score, generated_f
def eval(net, batch_size, test_loader, pool, epoch, model_type):
net.eval()
all_loss = 0
acc = 0
import gc;
for idx, data in enumerate(test_loader):
images_x, images_y, s = data
images_x, images_y, s = images_x.cuda(), images_y.cuda(), s.sum(1).cuda()/(64*64)
if model_type == "srn":
match_dist, inner_losses, match_score, re = net(images_x, images_y, pool)
elif model_type == "mlp":
match_dist, match_score, re = net(images_x, images_y, pool)
else:
match_dist = net(images_x, images_y).view(-1)
loss = ((match_dist- s)**2).sum()
all_loss += loss.item()
acc += torch.abs((match_dist- s)/s).mean()
acc = acc.detach().cpu()
gc.collect()
return all_loss/len(test_loader), acc/len(test_loader)
if __name__ == "__main__":
args = get_args()
print(args)
train_loader = data.get_loader(data.IsoColorCircles(train=True, size=64000, n = 2), batch_size = args.batch_size)
test_loader = data.get_loader(data.IsoColorCircles(train=False, size=4000, n = 2), batch_size = args.batch_size)
if args.model_type == "srn":
net = SSLR(float(args.inner_lr)).float().cuda()
if args.resume is not None:
print("resume from ", args.resume)
# state_dict = torch.load("set_model_recon_0.1_l2.pt")
state_dict = torch.load(args.resume)
own_state = net.state_dict()
for name, param in state_dict.items():
if isinstance(param, torch.nn.Parameter):
param = param.data
own_state[name].copy_(param)
elif args.model_type == "mlp":
net = SSLR(use_srn = False).float().cuda()
else:
assert args.model_type == "cnn"
net = Net().float().cuda()
optimizer = torch.optim.RMSprop(net.parameters(), lr=args.lr, weight_decay=args.weight_decay)
writer = SummaryWriter(f"match_runs/{args.model_type}_lr={args.lr}_wd={args.weight_decay}_ilr={args.inner_lr}", purge_step=0, flush_secs = 10)
running_loss = 0
for epoch in range(1000+1):
with mp.Pool(10) as pool:
print(f"epoch {epoch}")
net.train()
running_loss = 0
for idx, data in enumerate(train_loader):
images_x, images_y, s = data
images_x, images_y, s = images_x.cuda(), images_y.cuda(), s.sum(1).cuda()/(64*64)
optimizer.zero_grad()
if args.model_type == "srn":
match_dist, inner_losses, match_score, re = net(images_x, images_y, pool)
elif args.model_type == "mlp":
match_dist, match_score, re = net(images_x, images_y, pool)
else:
match_dist = net(images_x, images_y).view(-1)
dist_loss = ((match_dist- s)**2).sum()
use_set = (args.model_type == "srn") or (args.model_type == "mlp")
if use_set:
match_loss = match_score.mean()
loss = dist_loss + 10*match_loss
else:
loss = dist_loss
if args.recon :
recon_loss = ((re - images)**2).mean()
loss += recon_loss
if use_set:
writer.add_scalar("train/dist_loss", dist_loss.item(), global_step=epoch*len(train_loader) + idx)
writer.add_scalar("train/match_loss", match_loss.item(), global_step=epoch*len(train_loader) + idx)
if args.recon :
writer.add_scalar("train/recon_loss", recon_loss.item(), global_step=epoch*len(train_loader) + idx)
writer.add_scalar("train/loss", loss.item(), global_step=epoch*len(train_loader) + idx)
loss.backward()
alpha = 0.05
optimizer.step()
if idx % (len(train_loader)//4) == 0:
if use_set:
if args.model_type == "srn":
print(f"inner loss {[l.item()/args.batch_size for l in inner_losses]}")
print("dist_loss", dist_loss.item())
print("match_loss",match_loss.item())
if args.recon :
print("recon_loss",recon_loss.item())
print("loss",loss.item())
running_loss += loss.item()
print(running_loss/ len(train_loader))
if epoch % 1 ==0:
with mp.Pool(10) as pool:
eval_loss, acc = eval(net, args.batch_size, test_loader, pool, epoch, args.model_type)
print(f"eval: {eval_loss} {acc}")
writer.add_scalar("eval/loss", eval_loss, global_step=epoch)
writer.add_scalar("eval/acc", acc, global_step=epoch)
writer.flush()
print()
#save model
if args.save is not None:
torch.save(net.state_dict(), args.save)