-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathML_RUL.py
191 lines (155 loc) · 7.37 KB
/
ML_RUL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import random
import numpy as np
import pandas as pd
import sklearn
from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import matplotlib.animation as animation
random_seed = 42
random.seed(random_seed)
np.random.seed(random_seed)
sklearn.utils.check_random_state(random_seed)
def build_model(model_name: str):
model_dict = {
'LR': 'from sklearn.linear_model import LinearRegression as Model',
'KNN': 'from sklearn.neighbors import KNeighborsRegressor as Model',
'SVR': 'from sklearn.svm import SVR as Model',
'GPR': 'from sklearn.gaussian_process import GaussianProcessRegressor as Model',
'MLP': 'from sklearn.neural_network import MLPRegressor as Model',
'RF': 'from sklearn.ensemble import RandomForestRegressor as Model',
'LightGBM': 'from lightgbm import LGBMRegressor as Model',
}
exec(model_dict[model_name])
_model = eval("Model()")
return _model
def build_criterion(criterion_name: str):
crteria_dict = {
'MSE': 'from sklearn.metrics import mean_squared_error as criterion',
'RMSE': 'from sklearn.metrics import mean_squared_error as criterion', # squared=False
'MAE': 'from sklearn.metrics import mean_absolute_error as criterion',
}
exec(crteria_dict[criterion_name])
_criterion = eval("criterion")
# _criterion = eval("criterion()") if criterion_name not in ['RMSE'] else eval("criterion(squared=False)")
return _criterion
seq_len, pred_len = 10, 8 # Time step of input and output
input_dim, output_dim = 1, 1 # Feature number of input and output
data_source = 'NASA' # 'NASA' or 'CMAPSS'
standard_flag = True # True or False
model_name = 'LR' # 'LR' or 'GPR'
criterion = 'RMSE' # 'MSE' or 'RMSE' or 'MAE'
data_path = {
'NASA': 'data/NASA/',
}
data_list_npy = {
'NASA': 'NASA',
}
data_list_csv = {
'NASA': ['B0005', 'B0006', 'B0007', 'B0018'],
}
# Load data from csv-type file
data = []
for file_name in data_list_csv[data_source]:
data.append(pd.read_csv(data_path[data_source]+file_name+'.csv').to_numpy())
print('loading data: ', file_name+'.csv')
# # Load data from npy-type file
# data, data_temp = [], np.load(data_path[data_source]+data_list_npy[data_source]+'.npy', allow_pickle=True).item()
# for file_name in data_list_csv[data_source]:
# data.append(np.array(data_temp[file_name]).transpose())
# print('loading data: ', file_name+'.npy')
# Process data to RUL task
def process_data2RUL(data, seq_len, pred_len):
data_x, data_y = [], []
if seq_len == pred_len:
for i in range(len(data)):
data_temp = []
for j in range(len(data[i])-2*seq_len+1):
data_temp.append(data[i][j:j+seq_len, -1])
data_x.append(data_temp[:-seq_len])
data_y.append(data_temp[seq_len:])
print(len(data_x[-1]), len(data_y[-1]))
else:
for i in range(len(data)):
data_temp_x, data_temp_y = [], []
for j in range(len(data[i])-seq_len-pred_len+1):
data_temp_x.append(data[i][j:j+seq_len, -1])
data_temp_y.append(data[i][j+seq_len:j+seq_len+pred_len, -1])
data_x.append(data_temp_x)
data_y.append(data_temp_y)
print(len(data_x[-1]), len(data_y[-1]))
return data_x, data_y
data_x, data_y = process_data2RUL(data, seq_len, pred_len)
# Split data into train and test set # ['B0005.csv', 'B0006.csv', 'B0018.csv', 'B0007.csv']
# train_x, train_y = [np.array(data_x[i]) for i in [0,1,3]], [np.array(data_y[i]) for i in [0,1,3]]
# test_x, test_y = np.array(data_x[2]), np.array(data_y[2])
# real_capacity = data[2][:, -1]
train_x, train_y = [np.array(data_x[i]) for i in [0,1,2]], [np.array(data_y[i]) for i in [0,1,2]]
test_x, test_y = np.array(data_x[3]), np.array(data_y[3])
real_capacity = data[3][:, -1]
# Define model and fit data
if model_name == 'GPR':
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
kernel = DotProduct() + WhiteKernel()
model = GaussianProcessRegressor(kernel=kernel, random_state=random_seed)
else:
model = build_model(model_name)
criterion = build_criterion(criterion)
for i in range(len(train_x)):
model.fit(train_x[i], train_y[i])
# test
pred_y = model.predict(test_x)
print('pred_y: ', pred_y.shape)
# Calculate the error
error = []
for i in range(len(test_y)):
print(test_y[i], pred_y[i])
error.append(criterion(test_y[i], pred_y[i]))
print('error: ', error)
print('mean error: ', np.mean(error))
def iterative_pred(model, input, EOL):
# Iterative prediction
input_list, pred_y = [input], []
while True:
pred_y.append(model.predict([input])[0])
if all(pred_y[-1] > EOL):
input = np.concatenate([input[len(pred_y[-1]):], pred_y[-1]])
input_list.append(input)
else:
break
# pred_y = np.concatenate(pred_y)
return input_list, pred_y
class visual_iterative_pred():
def __init__(self, model, input, start, EOL, real_capacity, ax):
self.input_list, self.pred_y = iterative_pred(model, input, EOL)
self.in_len, self.out_len, self.s = len(input), len(self.pred_y[0]), start
capacity, = ax.plot(real_capacity, color='k', linewidth=2, markersize=3, marker='o', linestyle='dashed', label='Capacity')
raw_input, = ax.plot(np.arange(self.s, self.s+len(input)), input, color='b', linewidth=2, marker='*', markersize=6, label='raw_input')
EOL_im = ax.axhline(y=EOL, color='r', linestyle='dashed', linewidth=2, label='EOL')
# self.input_im, = ax.plot(self.s*self.in_len, self.s*self.in_len+np.arange(len(input)), input, color='r', linewidth=2, marker='o', markersize=6, label='iter_input')
self.input_im, = ax.plot([], [], color='r', linewidth=2, marker='o', markersize=6, label='iter_input')
self.predicted, = ax.plot([], [], color='green', linewidth=3, markersize=12, label='predicted')
self.pred_im, = ax.plot(np.arange(self.s+self.in_len, self.out_len + self.s+self.in_len), self.pred_y[0],
color='lime', linewidth=2, marker='*', markersize=4, label='predicting')
ax.legend()
ax.set_xlabel('Cycle')
ax.set_ylabel('Capacity(Ahr)')
self.ims = [capacity, raw_input, EOL_im, self.pred_im, self.input_im]
def my_update(self, i):
self.input_im.set_data(np.arange(self.s+i*8, self.s+i*8+self.in_len), self.input_list[i])
self.pred_im.set_data(np.arange(self.s+i * self.out_len + self.in_len, self.s+(i + 1) * self.out_len + self.in_len),
self.pred_y[i])
if i > 0:
self.predicted.set_data(np.arange(self.s+self.in_len, self.s+i*self.out_len+self.in_len), np.concatenate(self.pred_y[:i]))
return self.ims
fig, ax = plt.subplots(figsize=(7, 4), dpi=300)
start_cycle = 0
scope = visual_iterative_pred(model, test_x[start_cycle], start_cycle, 1.4, real_capacity, ax)
# pass a generator in "emitter" to produce data for the update func
ani = animation.FuncAnimation(fig, scope.my_update, range(len(scope.pred_y)), interval=250, blit=True)
ani.save(f'dynamic_{model_name}_{start_cycle}.gif', writer='pillow')
# ani.save('dynamic.gif', writer='imagemagick', fps=60)
if __name__ == '__main__':
pass